【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为- .
【答案】
(1)解:证明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,
又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,
∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE.
(2)解:以A为原点,以 为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,
则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0), , , ,M(2λ,2λ,2﹣2λ)
设平面PFM的法向量 , ,即 ,
设平面BFM的法向量 , ,
即 , ,解得
【解析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II) 以A为原点,以 为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.
科目:高中数学 来源: 题型:
【题目】已知图像上有一最低点,若图像上各点纵坐标不变,横坐标缩为原来的倍,再向左平移个单位得,又的所有根从小到大依次相差个单位,则的解析式为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:()的焦点为,抛物线上存在一点到焦点的距离为3,且点在圆:上.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知椭圆:()的一个焦点与抛物线的焦点重合,且离心率为.直线:交椭圆于,两个不同的点,若原点在以线段为直径的圆的外部,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某街道居委会拟在地段的居民楼正南方向的空白地段上建一个活动中心,其中米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形,上部分是以为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长不超过米,其中该太阳光线与水平线的夹角满足.
(1)若设计米,米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计与的长度,可使得活动中心的截面面积最大?(注:计算中取3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.
(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com