【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,点E在棱PD上,且PE=2ED.
(1)求证:平面PCD⊥平面PBC;
(2)求证:PB∥平面AEC.
【答案】
(1)证明:∵AD∥BC,AD⊥CD,
∴CD⊥BC,又CD⊥PB,BC平面PBC,PB平面PBC,BC∩PB=B,
∴CD⊥平面PBC,
又CD平面PCD,
∴平面PCD⊥平面PBC
(2)证明:连结BD交AC于O,连结EO.
∵AD∥BC,
∴△AOD∽△COB,
∴ ,
又PE=2ED,即 ,
∴OE∥PB,
∵OE平面EAC,PB平面EAC,
∴PB∥平面AEC.
【解析】(1)由CD⊥BC,CD⊥PB得出CD⊥平面PBC,故而平面PCD⊥平面PBC;(2)连结BD交AC于O,连结EO.利用三角形相似得出 ,从而得到OE∥PB,得出结论.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握平面与平面平行的判定(判断两平面平行的方法有三种:用定义;判定定理;垂直于同一条直线的两个平面平行)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(2n﹣1)an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当n为正整数时,函数N(n)表示n的最大奇因数,如N(3)=3,N(10)=5,…,设Sn=N(1)+N(2)+N(3)+N(4)+…+N(2n﹣1)+N(2n),则Sn= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)设 ,求方程f(x)=2的根;
(Ⅱ)设 ,函数g(x)=f(x)﹣2,已知b>3时存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一个零点,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则( )
A.f(﹣π)>f(﹣1)>f( )
B.f(﹣1)>f(﹣π)>f( )
C.f(﹣π)>f( )>f(﹣1)
D.f(﹣1)>f( )>f(﹣π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com