精英家教网 > 高中数学 > 题目详情

【题目】椭圆 的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限相交于点 .

(1)求椭圆的标准方程;

(2)设椭圆的左顶点为,右顶点为,点是椭圆上的动点,且点与点 不重合,直线与直线相交于点,直线与直线相交于点,求证:以线段为直径的圆恒过定点.

【答案】(1) . (2)证明见解析.

【解析】试题分析:

(1)由题意可得,则椭圆C的标准方程为.

(2)由题意可得,结合题意可得圆的方程为,则以线段ST为直径的圆恒过定点.

试题解析:

1)解: ,又,联立解得:

所以椭圆C的标准方程为.

2)证明:设直线AP的斜率为k,则直线AP的方程为

联立.

整理得: ,故

(分别为直线PAPB的斜率)

所以

所以直线PB的方程为:

联立

所以以ST为直径的圆的方程为:

,解得:

所以以线段ST为直径的圆恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 为曲线在点处的切线.

)求的方程.

)当时,证明:除切点之外,曲线在直线的下方.

)设 ,且满足,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是.

(1)求椭圆的标准方程;

(2)直线过点且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数数列满足,则称数列数列

若数列数列,且,求的值;

求证:若数列数列,则的项不可能全是正数,也不可能全是负数;

若数列数列,且中不含值为零的项,记项中值为负数的项的个数为,求所有可能取值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中,内角的对边分别为,已知,且 .

(1)求的面积.

(2)已知等差数列的公差不为零,若,且成等比数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的导函数为

若直线与曲线恒相切于同一定点,求的方程;

⑵ 若,求证:当时, 恒成立;

⑶ 若当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽率,得到如下表格:

(1)从这5天中任选2天,记发芽的种子数分别为求事件“均不小于25” 的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则(ⅰ____________

ⅱ)给出下列三个命题:①函数是偶函数;②存在,使得以点为顶点的三角形是等腰三角形;③存在,使得以点为顶点的四边形为菱形.

其中,所有真命题的序号是____________

查看答案和解析>>

同步练习册答案