精英家教网 > 高中数学 > 题目详情
10.已知抛物线C的方程为y2=2px(p>0),一条长度为4p的线段AB的两个端点A、B在抛物线C上运动,则线段AB的中点D到y轴距离的最小值为  (  )
A.2pB.$\frac{5}{2}p$C.$\frac{3}{2}p$D.3p

分析 l:x=-$\frac{p}{2}$,分别过A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分别为C,D,H,要求M到y轴的最小距离,只要先由抛物线的定义求M到抛物线的准线的最小距离d,然后用d-$\frac{p}{2}$即可求解.

解答 解:由题意可得抛物线的准线l:x=-$\frac{p}{2}$
分别过A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分别为C,D,H
在直角梯形ABDC中,MH=$\frac{AC+BD}{2}$,
由抛物线的定义可知AC=AF,BD=BF(F为抛物线的焦点)
MH=$\frac{AF+BF}{2}$≥$\frac{AB}{2}$=2p
即AB的中点M到抛物线的准线的最小距离为2p,
∴线段AB的中点M到y轴的最短距离为$\frac{1}{2}(4p-p)$=$\frac{3p}{2}$.
故选:C.

点评 本题考查线段中点到y轴距离的最小值的求法,是中档题,解题时要认真审题,注意抛物线性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知“x>k”是“$\frac{3}{x+1}<1$”的充分不必要条件,则k的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率互为倒数,且直线x-y-2=0经过椭圆的右顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D在BC边上,且$\overrightarrow{CD}=-2\overrightarrow{BD}$,若$\overrightarrow{CD}=p\overrightarrow{AB}+q\overrightarrow{AC}$,则p+q=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2,AC=2$\sqrt{2}$,AA1=1,点D为BC的中点.
(1)求证:A1B∥平面ADC1
(2)设A1B的中点为M,求三棱锥M-AC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线$|\begin{array}{l}{x}&{y}\\{2}&{1}\end{array}|$=3的一个方向向量可以是(-2,-1)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在图中,U表示全集,用A、B表出阴影部分,其中表示正确的是(  )
A.A∪BB.A∩BC.U(A∩B)D.(∁UA)∩B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{x+a+|x-a|}{2}$,g(x)=ax+1,其中a>0.若f(x)与g(x)的图象有两个不同的交点,则a的取值范围是(0,1).

查看答案和解析>>

同步练习册答案