精英家教网 > 高中数学 > 题目详情
10.若方程$\frac{{x}^{2}}{k-4}$-$\frac{{y}^{2}}{k+4}$=1表示双曲线,则它的焦点坐标为(  )
A.($\sqrt{2k}$,0),(-$\sqrt{2k}$,0)B.(0,$\sqrt{-2k}$),(0,$-\sqrt{2k}$)C.($\sqrt{2|k|}$,0),(-$\sqrt{2|k|}$,0)D.根据k的取值而定

分析 根据双曲线的方程和性质即可得到结论.

解答 解:∵方程$\frac{{x}^{2}}{k-4}$-$\frac{{y}^{2}}{k+4}$=1表示双曲线,
∴(k-4)(k+4)>0,
解得k>4,或k<-4,
当k>4时,由双曲线的方程可知,a2=k-4,b2=k+4,
则c2=a2+b2=2k,即c=$\sqrt{2k}$,
∴它的焦点坐标为($\sqrt{2k}$,0),(-$\sqrt{2k}$,0),
当k<-4时,由双曲线的方程可知,a2=-k-4,b2=4-k,
则c2=a2+b2=-2k,即c=$\sqrt{-2k}$,
∴它的焦点坐标为(0,$\sqrt{-2k}$),(0,-$\sqrt{-2k}$),
故选:D.

点评 本题主要考查双曲线的性质和方程,根据a,b,c之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数y=x2-|x|-a-1有四个不同的零点,则实数a的取值范围是$-\frac{5}{4}$<a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设点P是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$与圆x2+y2=2a2的一个交点,F1、F2分别是双曲线的左右焦点,且PF1=3PF2,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=sin$(2x-\frac{π}{6})$图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,对称中心坐标为($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,最大值时x的集合为{x|x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.证明函数u=$\frac{1}{r}$,满足方程$\frac{{∂}^{2}u}{{∂x}^{2}}+\frac{{∂}^{2}u}{{ay}^{2}}+\frac{{∂}^{2}u}{{az}^{2}}=0$,其中r=$\sqrt{{x}^{2}{+y}^{2}{+z}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=(m2+m-6)x2+(m-2)x+(n+7)为奇函数,则m=2或-3,n=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}{(x+y-2)(y-2)≤0}\\{0≤x≤1}\end{array}\right.$,则y-x的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线的中心在原点,焦点为F1、F2在x轴上,虚轴长为2$\sqrt{2}$;一条渐近线方程为y=$\sqrt{2}$x,点M在双曲线上,且$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,则点M到x轴的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x+2y=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1相交于A,B两点,AB中点为M,若直线AB斜率与OM斜率之积为-$\frac{1}{4}$,则椭圆的离心率e的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步练习册答案