精英家教网 > 高中数学 > 题目详情
4.在△ABC中,已知a=$\sqrt{3}$,b=3,A=30°,求B及S△ABC

分析 由正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}}{2}$,结合范围0<B<180°,可得:B=60°或120°,从而可求C,sinC的值,利用三角形面积公式即可得解.

解答 解:∵a=$\sqrt{3}$,b=3,A=30°,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{3×\frac{1}{2}}{\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
∵0<B<180°,可得:B=60°或120°,
∴C=180°-A-B=90°或30°,sinC=1或$\frac{1}{2}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{3\sqrt{3}}{2}$或$\frac{3\sqrt{3}}{4}$.

点评 本题主要考查了正弦定理,三角形内角和定理,三角形面积公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设z=1+2i,i为虚数单位,则z+$\overline{z}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知y=$\sqrt{{x}^{2}-2mx+3}$在(-∞,1]上单调递减,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{{2}^{2x+3}-{4}^{x}-14}$的定义域为[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.作出下列函数图象:
(1)y=x${\;}^{\frac{2}{3}}$;
(2)y=x${\;}^{\frac{3}{2}}$;
(3)y=x${\;}^{-\frac{3}{4}}$;
(4)y=x${\;}^{-\frac{4}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a=2${\;}^{2lo{g}_{4}3}$,b=3${\;}^{1+lo{g}_{3}2}$,则log2$\frac{a}{b}$的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是R上的增函数,令F(x)=f(x+1)+3,则F(x)是R上的(  )
A.增函数B.减函数C.先减后增D.先增后减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设随机变量x服从正态分布N(2,1),P(x>3)=p,则p(1<x<2)等于(  )
A.$\frac{1}{2}$pB.1-pC.1-2pD.$\frac{1}{2}$-p

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则(  )
A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+1)D.f(x+3)是奇函数

查看答案和解析>>

同步练习册答案