精英家教网 > 高中数学 > 题目详情

【题目】已知集合.

(1)若,问是否存在使;

(2)对于任意的,是否一定有?并证明你的结论.

【答案】(1) 一定存在,使成立(2) 不一定有

【解析】试题分析:(1)根据已知条件知:若aA,bB,则一定存在n1,n2z,使得a=3n1+1,b=3n2+1,所以a+b=3(n1+n2)+3.而集合M的元素需满足:x=6n+3=32n+3,显然n1+n2=2n时成立,(2)根据(1)判断:若n1+n2为奇数,则结论不正确所以不一定有a+b=mmM.

试题解析:

(1)令,则.

再令,则.

故若,一定存在,使成立.

(2)不一定有.

证明如下:设,

.

因为所以.

为偶数,令,

,此时.

为奇数,令,

,此时

综上可知,对于任意的不一定有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),
求证:
(1)对角线AC、BD是异面直线;
(2)直线EF和HG必交于一点,且交点在AC上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

年份200x(年)

0

1

2

3

4

人口数y(十)万

5

7

8

11

19


(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出Y关于x的线性回归方程Y=bx+a;
(3)据此估计2005年该城市人口总数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+cos2x.
(1)当x∈[0, ]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是椭圆 =1的左、右焦点.
(1)若M是该椭圆上的一点,且∠F1MF2=120°,求△F1MF2的面积;
(2)若P是该椭圆上的一个动点,求 的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论的单调性;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点与抛物线y2=8x的焦点重合,点 在C上.
(1)求椭圆C的方程;
(2)若椭圆C的一条弦被M(2,1)点平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求证:平面ABC平面ACD;

(2)EAB中点,求点A到平面CED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}为等差数列,Sn是其前n项和,已知S7=7,S15=75,Tn为数列{ }的前n项和,
(1)求a1和d;
(2)求Tn

查看答案和解析>>

同步练习册答案