【题目】如图,在四棱锥PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).证明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.
()求椭圆的方程.
()设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点, (两点均不在坐标轴上),且使得直线、的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求f(x)的定义域;
(2)当x∈(1,+∞),
①求证:f(x)在区间(1,+∞)上是减函数;
②求使关系式f(2+m)>f(2m-1)成立的实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ADC=60°,侧面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M为PB的中点.
(1)求证:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的顶点, 在椭圆上, 在直线上,且.
()求椭圆的离心率.
()当边通过坐标原点时,求的长及的面积.
()当,且斜边的长最大时,求所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:方程有两个不相等的实数根;命题:不等式的解集为.若或为真,为假,求实数的取值范围.
【答案】或
【解析】
根据“或为真,为假”判断出“为真,为假”,利用判别式列不等式分别求得为假、为真时的取值范围,再取两者的交集求得实数的取值范围.
因为或为真,为假,所以为真,为假
为假,,即:,∴或 ,
为真,,即:,∴或,
所以取交集为或 .
【点睛】
本小题主要考查含有简单逻辑联结词命题的真假性,考查一元二次方程根与判别式的关系,考查一元二次不等式解集为与判别式的关系,属于中档题.
【题型】解答题
【结束】
18
【题目】已知双曲线的中心在原点,焦点为,且离心率.
(1)求双曲线的方程;
(2)求以点为中点的弦所在的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为F,左顶点为A,已知,其中O为坐标原点,e为椭圆的离心率.
求椭圆C的方程;
是否存在斜率为的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线上找到一点P,在椭圆C上找到一点Q,满足?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图中有一个信号源和五个接收器,接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器不能同时接收到信号的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com