精英家教网 > 高中数学 > 题目详情

【题目】已知变量之间的线性回归方程为,且变量之间的一-组相关数据如下表所示,则下列说法错误的是( )

A.可以预测,当时,B.

C.变量之间呈负相关关系D.该回归直线必过点

【答案】B

【解析】

的值代入回归直线方程可判断出A选项的正误;将的坐标代入回归直线方程可计算出实数的值,可判断出B选项的正误;根据回归直线方程的斜率的正负可判断出C选项的正误;根据回归直线过点可判断出D选项的正误.

对于A选项,当时,A选项正确;

对于B选项,,将点的坐标代入回归直线方程得,解得B选项错误;

对于C选项,由于回归直线方程的斜率为负,则变量之间呈负相关关系,C选项正确;

对于D选项,由B选项可知,回归直线必过点D选项正确.故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着人们经济收入的不断增加,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如表的数据资料:

使用年限x

2

3

4

5

6

总费用y

2.2

3.8

5.5

6.5

7.0

1)求线性回归方程

2)估计使用年限为12年时,使用该款车的总费用是多少万元?

线性回归方程中斜率和截距用最小二乘法估计计算公式如下:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在实数t,使得任给,不等式恒成立,则m的最大值为(

A.3B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆心为点,点是圆内一个定点,是圆上任意一点,线段的垂直平分线和半径相交于点在圆上运动.

l)求动点的轨迹的方程;

2)若为曲线上任意一点,|的最大值;

3)经过点且斜率为的直线交曲线两点在轴上是否存在定点,使得恒成立?若存在,求出点坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为是椭圆上一点,轴,.

1)求椭圆的标准方程;

2)若直线与椭圆交于两点,线段的中点为为坐标原点,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ln(ax+b)+x2(a≠0).

(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=xab的值;

(2)f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左,右顶点分别为,长轴长为,且经过点.

1)求椭圆的标准方程;

2)若为椭圆上异于的任意一点,证明:直线的斜率的乘积为定值;

3)已知两条互相垂直的直线都经过椭圆的右焦点,与椭圆交于四点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数:若存在闭区间和常数e,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间D上的平底型函数.

1)判断函数是否为R上的平底型函数?并说明理由;

2)若函数是区间上的平底型函数,求mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,),其中数列都是递增数列.

1)若,判断直线是否平行;

2)若数列都是正项等差数列,它们的公差分别为,设四边形的面积为),求证:也是等差数列;

3)若),,记直线的斜率为,数列8项依次递减,求满足条件的数列的个数.

查看答案和解析>>

同步练习册答案