精英家教网 > 高中数学 > 题目详情
已知函数时,都取得极值。
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围。
解:(1)f ′(x)=3x2+2a x+b=0.
由题设,x=1,x=-为f ′(x)=0的解.
a=1-=1×(-).∴a=-,b=-2……………………………………4分
经检验得:这时都是极值点.…………………………………5分
(2)f (x)=x3x2-2 x+c,由f (-1)=-1-+2+c=,c=1.
∴f (x)=x3x2-2 x+1.

∴  f (x)的递增区间为(-∞,-),及(1,+∞),递减区间为(-,1).
当x=-时,f (x)有极大值,f (-)=
当x=1时,f (x)有极小值,f (1)=-……………………………………………10分
(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3x2-2 x+c,
f (x)在[-1,-及(1,2]上递增,在(-,1)递减.
而f (-)=-+c=c+.f (2)=8-2-4+c=c+2.
∴  f (x)在[-1,2]上的最大值为c+2.∴ ,∴ 
∴  或∴ …………………16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理数)(14分) 已知函数
(Ⅰ)设函数F(x)=18f(x)- [h(x)],求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程
(Ⅲ)设,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
已知函数.
(1)求函数在点处的切线方程;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数有无穷多个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设函数
(1)求的单调区间;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)若直线过点,且与曲线都相切,
求实数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(本小题满分12分)
(Ⅰ)设函数,证明:当时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为,证明:
(Ⅰ)设函数,证明:当时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,函数图像与x轴相切于原点。

(1)求的值;
(2)若,设,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案