精英家教网 > 高中数学 > 题目详情

【题目】在四边形中,;如图,将沿边折起,连结,使,求证:

1)平面平面

2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.

【答案】1)证明见详解;(2

【解析】

1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接,可得,可求出.中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.

2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出的夹角,结合图形,写出二面角的大小.

证明:(1)在中,

为正三角形,且

中,

为等腰直角三角形,且

的中点,连接

平面

平面

平面

..平面平面

2)以为坐标原点,建立如图所示的空间直角坐标系,则

.

设平面的一个法向量为.

,解得

与平面所成角的正弦值为

整理得

解得(含去)

为平面的一个法向量

二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若存在实数,使不等式对一切正数都成立(其中为自然对数的底数),则实数的最小值是( .

A.B.4C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)若,求的极值;

2)若曲线与直线有三个互异的公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有关命题的说法错误的是(

A.pq为假命题,则pq均为假命题

B.x1”x23x+20”的充分不必要条件

C.命题x23x+20,则x1”的逆否命题为:x≠1,则x23x+2≠0”

D.对于命题px≥02x3,则¬Px02x≠3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.到直线的距离为3”的充要条件

B.直线的倾斜角的取值范围为

C.直线与直线平行,且与圆相切

D.离心率为的双曲线的渐近线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若曲线在点(10)处的切线为l : xy10,求ab的值;

3)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:(1是偶函数;(2是偶函数;(3的最小值为;(4有两个零点;其中真命题的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集为,且中只有一个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案