精英家教网 > 高中数学 > 题目详情
(2013•宁德模拟)已知二次函数f(x)=ax2+bx+1为偶函数,且f(-1)=-1.
(I )求函数f(x)的解析式;
(II)若函数g(x)=f(x)+(2-k)x在区间(-2,2)上单调递增,求实数k的取值范围.
分析:(I)由偶函数的图象关于y轴对称,可得b值,进而根据f(-1)=-1,可得a值,进而可得函数f(x)的解析式;
(II)若函数g(x)=f(x)+(2-k)x在区间(-2,2)上单调递减,可得区间(-2,2)在对称轴的左侧,进而得到实数k的取值范围
解答:解:(I)∵二次函数f(x)=ax2+bx+1为偶函数,
故函数f(x)的图象关于y轴对称
即x=-
b
2a
=0,即b=0
又∵f(-1)=a+1=-1,即a=-2.
故f(x)=-2x2+1
(II)由(I)得g(x)=f(x)+(2-k)x=-2x2+(2-k)x+1
故函数g(x)的图象是开口朝下,且以x=
2-k
4
为对称轴的抛物线
故函数g(x)在(-∞,
2-k
4
]上单调递增,
又∵函数g(x)在区间(-2,2)上单调递增,
2-k
4
≥2
解得k≤-6
故实数k的取值范围为(-∞,-6]
点评:本题考查的知识点是函数解析式的求法,二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁德模拟)集合U={1,2,3,4,5},集合A={2,4},则?UA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知在数列{an}中,a1=1,an+1=2an(n∈N+),数列{bn}是公差为3的等差数列,且b2=a3
(I)求数列{an}、{bn}的通项公式;
(II)求数列{an-bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知M={-1,0,1},N={x丨x2+x=0},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)已知向量
a
=(-2,1),
b
=(x+1,-2),若
a
b
,则|
a
+
b
|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)某社区以“周末你最喜爱的一个活动”为题,对该社区2000个居民进行随机抽样调查(每位被调查居民必须而且只能从运动、上网、看书、聚会、其它等五项中选择一个项目)若抽取的样本容量为50,相应的条形统计图如图所示.据此可估计该社区中最喜欢运动的居民人数为(  )

查看答案和解析>>

同步练习册答案