精英家教网 > 高中数学 > 题目详情

【题目】已知圆Cx2+(y-1)2=5,直线lmxy+1-m=0(mR).

(1)判断直线l与圆C的位置关系;

(2)设直线l与圆C交于AB两点,若直线l的倾斜角为120°,求弦AB的长.

【答案】(1)直线l与圆C必相交 (2)

【解析】

(1)判断直线过定点利用点与圆的位置关系即可判断直线与圆的位置关系;(2)根据直线的倾斜角为求出直线斜率以及直线的方程,利用弦长公式即可求弦的长.

(1)直线l可变形为y-1=m(x-1),因此直线l过定点D(1,1),

=1<,所以点D在圆C内,则直线l与圆C必相交.

(2)由题意知m≠0,所以直线l的斜率km,又k=tan 120°=-,即m=-

此时,圆心C(0,1)到直线l xy-1=0的距离d

又圆C的半径r,所以|AB|=2=2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:

1证明直线l经过定点并求此点的坐标;

2若直线l不经过第四象限,求k的取值范围;

3若直线lx轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax+a(a∈R),其中e为自然对数的底数.
(1)讨论函数y=f(x)的单调性;
(2)函数y=f(x)的图象与x轴交于A(x1 , 0),B(x2 , 0)两点,x1<x2 , 点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记 ,求at﹣(a+t)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设过抛物线的焦点的直线交抛物线于点,若以为直径的圆过点,且与轴交于 两点,则( )

A. 3 B. 2 C. -3 D. -2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为(
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的定义域为R.
(Ⅰ)求实数m的范围;
(Ⅱ)若m的最大值为n,当正数a,b满足 时,求4a+7b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(2x+ )图象上的点M(θ, )(0<θ< )向右平移t(t>0)个单位长度得到点M′.若M′位于函数y=sin2x的图象上,则(
A.θ= ,t的最小值为
B.θ= ,t的最小值为
C.θ= ,t的最小值为
D.θ= ,t的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆方程;

(2)设不过原点的直线,与该椭圆交于两点,直线的斜率依次为,满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是请说明理由.

查看答案和解析>>

同步练习册答案