精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
( I)求二面角C-DE-C1的正切值;( II)求直线EC1与FD1所成的余弦值.
(I)以A为原点,
AB
AD
AA1
分别为x轴,y轴,z轴的正向建立空间直角坐标系,
则有D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2)
于是,
DE
=(3,-3,0),
EC1
=(1,3,2),
FD1
=(-4,2,2)
设向量
n
=(x,y,z)
与平面C1DE垂直,则有cosβ=
EC1
FD1
|
EC1|
×|
FD1
|
=
1×(-4)+3×2+2×2
12+32+22
×
(-4)2+22+22
=
21
14
n
DE
n
EC1
3x-3y=0
x+3y+2z=0
⇒x=y=-
1
2
z
n
=(-
z
2
,-
z
2
,z)=
z
2
(-1,-1,2),其中z>0
n0
=(-1,-1,2),则
n0
是一个与平面C1
DE垂直的向量,
∵向量
AA1
=(0,0,2)与平面CDE垂直,
n0
AA1
所成的角θ为二面角C-DE-C1
的平面角
∵cosθ=
n0
AA1
|n0
|AA1
|
=
-1×0-1×0+2×2
1+1+4
×
0+0+4
=
6
3

∴tanθ=
2
2

(II)设EC1与FD1所成角为β,则cosβ=
EC1
FD1
|
EC1|
×|
FD1
|
=
1×(-4)+3×2+2×2
12+32+22
×
(-4)2+22+22
=
21
14
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

三棱锥P-ABC中,∠PAB=∠PAC=∠ACB=90°,AC=2,BC=
13
,PB=
29
,求PC与AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(
3
2
1
2
,0
),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(I)求向量
OD
的坐标;
(Ⅱ)设向量
AD
BC
的夹角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,点D是BC上一点,且AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)求证:A1B平面ADC1
(3)求二面角C-AC1-D大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.
(Ⅰ)当E是AB的中点时,求证:AF平面PEC;
(Ⅱ)要使二面角P-EC-D的大小为45°,试确定E点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方形ABCD的边长为1,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=1,得到三棱锥A-BCD,如图所示.
(Ⅰ)若点M是棱AB的中点,求证:OM平面ACD;
(Ⅱ)求证:AO⊥平面BCD;
(Ⅲ)求二面角A-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别为椭圆的上、下焦点,是抛物线的焦点,点在第二象限的交点, 且
(1)求椭圆的方程;
(2)与圆相切的直线交椭,若椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案