已知函数,
(1)讨论函数的单调性;
(2)证明:若,则对于任意有。
(1)a=2时,在上单调增加;时,在上单调减少,在,上单调增加;时,在(1,a-1)上单调减少,在(0,1),(a-1,+?)上单调增加;
(2)证明详见解析
解析试题分析:(1)求导,利用导数分类求单调性;(2)先求导,然后求出单间区间,在进一步证明即可.
试题解析:(1)的定义域为,
(i)若,即a=2,则,故在上单调增加。
(ii)若,而,故,则当时,;
当及时,。
故在上单调减少,在,上单调增加。
(iii)若,即, 同理可得在(1,a-1)上单调减少,在(0,1),(a-1,+?)上单调增加。
(2)考虑函数,
则,
由于,故,即在上单调增加,从而当时,
有,即,故;
当时,有。
考点:1.求函数的导数;2.利用导数求函数的单调性.
科目:高中数学 来源: 题型:解答题
(理)已知函数f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值与最小值;
(Ⅱ)若f(x)<4-At对于任意的x∈[1,3],t∈[0,2]恒成立,求实数A的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com