精英家教网 > 高中数学 > 题目详情
7.若直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

分析 当直线与椭圆有公共点时,直线方程与椭圆方程构成的方程组有解,等价于消掉y后得到x的二次方程有解,故△>0,解出即可.

解答 解:由$\left\{\begin{array}{l}y=x+m\\ \frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1\end{array}\right.$,得7x2+8mx+4m2-12=0,
当直线与椭圆有公共点时,△=64m2-4×7(4m2-12)>0,即-3m2+21>0,
解得-$\sqrt{7}$<m<$\sqrt{7}$,
∴实数m的取值范围是,(-$\sqrt{7}$,$\sqrt{7}$).
故选:C.

点评 本题考查直线与圆锥曲线的位置关系,考查函数与方程思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若4≤a≤8,0≤b≤2,则a+b的取值范围是(  )
A.(4,10)B.[4,10]C.(6,8)D.[6,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两直线l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圆C所得的弦长均为2,则圆C的面积是10π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.
(1)求证:BC⊥平面PBD;
(2)设E是侧棱PC上一点,且CE=2PE,求四面体P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系xOy中,圆x2+y2-6x+8y+21=0的半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把函数f(x)=2sin(2x+$\frac{π}{6}$)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的图象,关于函数g(x),下列说法正确的是(  )
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数
B.其图象关于直线x=-$\frac{π}{4}$对称
C.函数g(x)是奇函数
D.当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,函数g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求关于x、y、z的方程组$\left\{\begin{array}{l}{(λ+3)x+y+2z=λ}\\{λx+(λ-1)y+z=2λ}\\{3(λ+1)x+λy+(λ+3)z=3λ}\end{array}\right.$有唯一解的充要条件,并把这个条件下的解求出来.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.6+$\frac{π}{8}$B.6+$\frac{π}{6}$C.4+$\frac{π}{8}$D.4+$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin2x+sin2x-1.
(1)求函数f(x)的单调递增区间;
(2)设$f({\frac{x_0}{2}})=cos({\frac{π}{6}+α})cos({\frac{π}{6}-α})+{sin^2}α$,其中0<x0<π,求tanx0的值.

查看答案和解析>>

同步练习册答案