精英家教网 > 高中数学 > 题目详情

【题目】设函数 .

1)当时,求曲线在点处的切线方程;

2)如果不等式对于一切的恒成立,求的取值范围;

3)证明:不等式对于一切的恒成立.

【答案】(1) (2) (3)证明见解析.

【解析】试题分析:

1)当时, 利用导函数研究函数的切线方程可得在点处的切线方程为

2原问题等价于恒成立.构造函数 结合函数的单调性可得,故的取值范围是

3原问题等价于.构造函数.结合(2)的结论可知.,从而有对于一切的恒成立.

试题解析:

1时, ,则,故,切线方程为:

2)因为,所以恒成立,等价于恒成立.

,得

时,,所以 上单调递减,

所以 时,.

因为恒成立,所以

3)当时, ,等价于.

.求导,得.

由(2)可知,时, 恒成立.

所以时, ,有,所以.

所以上单调递增,当时,.

因此当时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex-2+e2-x,若实数x1x2满足x1x2x1+x2<4且(x1-2)(x2-2)<0,则下列结论正确的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数fx)满足f(2x)=x2-2x

(Ⅰ)求函数y=fx)的解析式;

(Ⅱ)若关于x的方程fx)=在(1,4)上有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)对任意实数x满足fx+2)=f(-x+2),又f(0)=3,f(2)=1.

(1)求函数fx)的解析式;

(2)若fx)在[0,m]上的最大值为3,最小值为1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和为Sn , 且an﹣a1=2 (n≥2),若bn= + ,则bn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且x=-1处取得极大 2

1)求f(x)的解析式;

2)过点A(1,t) 可作函数f(x)图像的三条切线,求实数t的取值范围;

3)若对于任意的恒成立,求实数m取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点M(1,f(1))处的切线方程为

求(1)实数a,b的值;

2)函数的单调区间及在区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 .

1)若,求实数的值;

2)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)判断函数的奇偶性并求函数的零点;

Ⅱ)写出的单调区间;(只需写出结果)

Ⅲ)试讨论方程的根的情况.

查看答案和解析>>

同步练习册答案