对于定义域为的函数,如果同时满足以下三个条件:
①对任意的,总有;②;③若都有 成立;
则称函数为函数.
下面有三个命题:
(1)若函数为函数,则;(2)函数是函数;
(3)若函数为函数,假定存在,使得,且, 则; 其中真命题是________.(填上所有真命题的序号)
科目:高中数学 来源: 题型:
对于定义域为的函数,若同时满足:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把函数()叫做闭函数.
(1) 求闭函数符合条件②的区间;
(2) 若是闭函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)定义:对于函数,.若对定义域内的恒成立,则称函数为函数.(1)请举出一个定义域为的函数,并说明理由;(2)对于定义域为的函数,求证:对于定义域内的任意正数,均有;
(3)对于值域的函数,求证:.
查看答案和解析>>
科目:高中数学 来源:2011届上海市卢湾区高考模拟考试数学试卷(理科) 题型:解答题
对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.
(1)判断1是否为函数≤≤的“均值”,请说明理由;
(2)若函数为常数)存在“均值”,求实数a的取值范围;
(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
查看答案和解析>>
科目:高中数学 来源:2015届广东省高一下学期期末考试数学试卷(解析版) 题型:填空题
对于定义域为的函数,若存在区间,使得则称区间M为函数的“等值区间”.给出下列三个函数:
①; ②; ③
则存在“等值区间”的函数的个数是___________.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市崇明县高三第一学期期末考试数学 题型:填空题
定义:对于定义域为的函数,如果存在,使得成立,称函数在上是“”函数。已知下列函数:①; ②;③(); ④,其中属于“”函数的序号是 .(写出所有满足要求的函数的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com