【题目】已知椭圆的左、右焦点分别为,离心率为,直线与椭圆C交于A,B两点,且.
(1)求椭圆C的方程.
(2)不经过点的直线被圆截得的弦长与椭圆C的长轴长相等,且直线与椭圆C交于D,E两点,试判断的周长是否为定值?若是,求出定值;若不是,请说明理由.
【答案】(1)(2)的周长为定值为,详见解析
【解析】
(1)根据已知条件求出A、B两点的坐标,再由和离心率为建立关于a,b,c的方程,从而得椭圆的方程;
(2)根据直线被圆所截得的弦长等于椭圆的长轴长得出k,m的关系,再将直线与椭圆的方程联立消去y,得到交点的横坐标的韦达定理表达式,分别求出,得出的周长为定值,得解.
(1)因为,所以,则即,所以椭圆C的方程可化为,
由得不妨令
易知则
因为,所以,即,
又,所以
所以椭圆C的方程为
(2)由(1)知椭圆C的长轴长为,因为直线被圆截得的弦长与椭圆C的长轴长相等,所以圆的圆心O(O为坐标原点)到直线l的距离,所以,即
设,联立方程,得整理得
所以,又,
所以
又
所以,
所以的周长是.
所以的周长为定值,为.
得解.
科目:高中数学 来源: 题型:
【题目】已知是抛物线的焦点,是抛物线上一点,且.
(1)求抛物线的标准方程;
(2)过点的动直线交抛物线于两点,抛物线上是否存在一个定点,使得以弦为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点.
(1)求椭圆的标准方程.
(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为,则的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,一个长轴顶点在直线上,若直线与椭圆交于,两点,为坐标原点,直线的斜率为,直线的斜率为.
(1)求该椭圆的方程.
(2)若,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点.
(1)求椭圆及抛物线的方程;
(2)设过且互相垂直的两动直线,与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 为两条不同的直线, , 为两个不同的平面,对于下列四个命题:
①, , , ②,
③, , ④,
其中正确命题的个数有( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com