精英家教网 > 高中数学 > 题目详情

【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:

20以下

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

【答案】;()详见解析;(2200

【解析】

)随机抽取的100名顾客中,年龄在[3050)且未使用自由购的有3+1417人,由概率公式即可得到所求值;

所有的可能取值为1,2,3,求出相应的概率值,即可得到分布列与期望;

)随机抽取的100名顾客中,使用自由购的有44人,计算可得所求值.

)在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的共有3+14=17人,

所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为

所有的可能取值为1,2,3

,

,

.

所以的分布列为

1

2

3

所以的数学期望为.

)在随机抽取的100名顾客中,

使用自由购的共有人,

所以该超市当天至少应准备环保购物袋的个数估计为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面是边长为的菱形,.

1)证明:平面平面

2)若是等边三角形,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:

时间

人数

15

60

90

75

45

15

1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.

列联表如下

流动人员

非流动人员

总计

办理社保手续所需

时间不超过4

办理社保手续所需

时间超过4

60

总计

210

90

300

2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左、右焦点分别为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切,点在椭圆上,

1)求椭圆的方程;

2)若直线与椭圆交于两点,点,若,求斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A1)是离心率为的椭圆Cab0)上的一点,斜率为的直线BD交椭圆CBD两点,且ABD三点不重合

1)求椭圆C的方程;

2)求证:直线ABAD的斜率之和为定值

3ABD面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

1)求动圆圆心的轨迹的方程;

2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案