【题目】已知抛物线的准线l经过椭圆的左焦点,且l与椭圆交于A,B两点,过椭圆N右焦点的直线交抛物线M于C,D两点,交椭圆于G,H两点,且面积为3.
(1)求椭圆N的方程;
(2)当时,求.
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正四面体ABCD中,M,N分别为棱AB和CD的中点,一个平面分别与棱BC,BD,AD,AC交于E,F,G,H,且MN⊥平面EFGH.给出下列六个结论:①AC⊥BD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四边形EFGH的周长为定值;⑤四边形EFGH的面积有最大值;⑥四边形EFGH一定是矩形,其中,所有正确结论的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD为梯形,AB∥CD,∠DAB=90°,BDD1B1为矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.
(1)证明:CB1⊥AD1;
(2)求B1到平面ACD1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形ABCD中,E、F是AD、BD中点,AB=AD=CD=2, BD=2 ,∠BDC=90°,将△ABD沿对角线BD折起至△,使平面⊥平面BCD,则四面体中,下列结论不正确是 ( )
A. EF∥平面
B. 异面直线CD与所成的角为90°
C. 异面直线EF与所成的角为60°
D. 直线与平面BCD所成的角为30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C:的右焦点为F,过点F的直线l与椭圆交于A、B两点,直线n:x=4与x轴相交于点E,点M在直线n上,且满足BM∥x轴.
(1)当直线l与x轴垂直时,求直线AM的方程;
(2)证明:直线AM经过线段EF的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com