【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E为BC的中点,点M为棱AA1的中点.
(1)证明:DE⊥平面A1AE;
(2)证明:BM∥平面A1ED.
【答案】
(1)证明:在△AED中,AE=DE= ,AD=2,
∴AE⊥DE.
∵A1A⊥平面ABCD,
∴A1A⊥DE,
∴DE⊥平面A1AE
(2)证明:设AD的中点为N,连接MN、BN.
在△A1AD中,AM=MA1,AN=ND,∴MN∥A1D,
∵BE∥ND且BE=ND,
∴四边形BEDN是平行四边形,
∴BN∥ED,
∴平面BMN∥平面A1ED,
∴BM∥平面A1ED.
【解析】(1)欲证DE⊥平面A1AE,根据线面垂直的判定定理可知只需证AE⊥DE,A1A⊥DE,即可;(2)设AD的中点为N,连接MN、BN,由线线平行推出面面平行,再由平面BMN∥平面A1ED,可推出BM∥平面A1ED.
【考点精析】掌握直线与平面平行的判定和直线与平面垂直的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为 .
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合U=R,A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求A∩B,(UA)∪B;
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对于任意x∈[a,b]均有|f(x)﹣g(x)|≤1成立,则称函数f(x)和g(x)在区间[a,b]上是接近的.若f(x)=log2(ax+1)与g(x)=log2x在区[1,2]上是接近的,则实数a的取值范围是( )
A.[0,1]
B.[2,3]
C.[0,2)
D.(1,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点.试用空间向量知识解下列问题:
(1)求证:平面ABB1A1⊥平面A1BD;
(2)求二面角A﹣A1D﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且满足不等式22a+1>25a﹣2 .
(1)求实数a的取值范围.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且过点.若点在椭圆上,则点称为点的一个“椭点”.
(1)求椭圆的标准方程;
(2)若直线: 与椭圆相交于, 两点,且, 两点的“椭点”分别为, ,以为直径的圆经过坐标原点,试求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com