精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点满足方程.

1)求点M的轨迹C的方程;

2)作曲线C关于轴对称的曲线,记为,在曲线C上任取一点,过点P作曲线C的切线l,若切线l与曲线交于AB两点,过点AB分别作曲线的切线,且的交点为Q,试问以Q为直角的是否存在,若存在,求出点P的坐标;若不存在,请说明理由.

【答案】1,(2)存在,

【解析】

1)平方化简,即可求解;

2)根据导数的几何意义求出切线l的方程,与曲线方程联立,由韦达定理,确定两交点AB坐标关系,再利用导数的几何意义,求出切线的方程,并联立求出Q点坐标,

利用,结合AB坐标关系,即可求解.

1)由

两边平方并化简,得,即

所以点M的轨迹C的方程为.

2)依题可设点

曲线C切于点P的切线l的斜率为

切线l的方程为

整理得

依题可知曲线

联立方程组

,所以.(*)

设曲线上点处的切线斜率为

切线方程为,整理得

同理可得曲线上点处的切线方程为

联立方程组

又由(*)式得

所以的交点Q的坐标为

假设以Q为直角的存在,则有

所以由,得

化简得

因为由题得,所以

所以点P的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=,△BF1F2为直角三角形.

(1)求椭圆C的方程;

(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为6组,得到如图所示的频率分布直方图.

1)求a的值;

2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;

3)在抽取的100名理科生中,采用分层抽样的方法从成绩在内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在内的人数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况单位:百元,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:

组别

频数

10

390

400

188

12

求所得样本的中位数精确到百元

根据样本数据,可近似地认为市民的旅游费用支出服从正态分布,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;

若年旅游消费支出在百元以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C过点,左焦点

1)求椭圆C的标准方程;

2)过点F作于x轴不重合的直线ll与椭圆交于AB两点,点A在直线上的投影N与点B的连线交x轴于D点,D点的横坐标是否为定值?若是,请求出定值;若不是,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线为其焦点,为其准线,过任作一条直线交抛物线于两点,分别为上的射影,的中点,给出下列命题:

1;(2;(3

4的交点的轴上;(5交于原点.

其中真命题的序号为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数同比不减函数

1)求证:对任意正常数都不是同比不减函数

2)若函数同比不减函数,求的取值范围;

3)是否存在正常数,使得函数同比不减函数,若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于______

查看答案和解析>>

同步练习册答案