精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{{x}^{2}}{2}$$+\frac{{y}^{2}}{n}$=1(0<n<2).
(Ⅰ)若椭圆C的离心率为$\frac{1}{2}$,求n的值;
(Ⅱ)若过点N(-2,0)任作一条直线l与椭圆C交于不同的两点A,B,在x轴上是否存在点M,使得∠NMA+∠NMB=180°?若存在,求出点M的坐标;若不存在,请说明理由.

分析 (Ⅰ)由a2=2,b2=n,所以c2=2-n,又e=$\frac{c}{a}=\frac{1}{2}$,得n
( II)若存在点M(m,0),使得∠NMA+∠NMB=180°,
则直线AM和BM的斜率存在,分别设为k1,k2.等价于k1+k2=0.
依题意,直线l的斜率存在,故设直线l的方程为y=k(x+2).与椭圆方程联立,利用△>0.求出.设A(x1,y1),B(x2,y2),利用韦达定理,通过令k1+k2=$\frac{{y}_{1}}{{x}_{1}-m}+\frac{{y}_{2}}{{x}_{2}-m}$=0,求出m.

解答 解:(Ⅰ)因为a2=2,b2=n,所以c2=2-n,
又e=$\frac{c}{a}=\frac{1}{2}$,得n=$\frac{3}{2}$
( II)若存在点M(m,0),使得∠NMA+∠NMB=180°,
则直线AM和BM的斜率存在,分别设为k1,k2.等价于k1+k2=0.
依题意,直线l的斜率存在,故设直线l的方程为y=k(x+2).
由$\left\{\begin{array}{l}{y=k(x+2)}\\{\frac{{x}^{2}}{2}+\frac{{y}^{2}}{n}=1}\end{array}\right.$得(2k2+n)x2-8k2x+8k2-2n=0.
因为直线l与椭圆C有两个交点,所以△>0.
即(8k22-4(2k2+n)(8k2-2n)>0,解得k2<$\frac{n}{2}$.
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{8{k}^{2}}{2{k}^{2}+n}$,x1x2=$\frac{8{k}^{2}-2n}{2{k}^{2}+n}$.
y1=k(x1+2),y2=k(x2+2).
令k1+k2=$\frac{{y}_{1}}{{x}_{1}-m}+\frac{{y}_{2}}{{x}_{2}-m}$=0,(x1-m)y2+(x2-m)y1=0,
(x1-m)k(x2+2)+(x2-m)k(x1+2)=0,
当k≠0时,2x1x2-(m-2)(x1+x2)-4m=0,$\frac{n(m+1)}{2{k}^{2}+n}=0$,∴m=-1.
当k=0时,也成立.
所以存在点M(-1,0),使得∠PQM+∠PQN=180°.

点评 本题考查直线与椭圆的综合应用,考查转化思想的应用,存在性问题的处理方法,考查分析问题解决问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=1-2{sin^2}(x+\frac{π}{8})+2sin(x+\frac{π}{8})cos(x+\frac{π}{8})$.
(1)求f(x)的最小正周期及单调增区间;
(2)求f(x)在区间$[{-\frac{π}{4},\frac{3π}{8}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知命题p:不等式x2-2ax-2a+3≥0恒成立;命题q:不等式x2+ax+2<0有解.
(Ⅰ)若p∨q和¬q均为真命题,求实数a的取值范围;
(Ⅱ)若p是真命题,抛物线y=x2与直线y=ax+1相交于M,N两点,O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)=$\frac{{2}^{x}-t}{{2}^{x}+1}$是“可构造三角形函数”,则实数t的取值范围是(  )
A.[-1,0]B.(-∞,0]C.[-2,-1]D.[-2,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的左顶点A作斜率为1的直线l,若l与双曲线的两条渐近线分别相交于B,C,且2$\overrightarrow{AB}$=$\overrightarrow{BC}$,则此双曲线的离心率是(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$\overrightarrow{a}$=(1,λ,2),$\overrightarrow{b}$=(2,-1,2),$\overrightarrow{c}$=(1,4,4),且$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,则λ=(  )
A.1B.-1C.1或2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,四面体OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且OM=2MA,N为BC的中点,$\overrightarrow{MN}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$,则x+y+z=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求|$\overrightarrow{AB}$|;
(2)已知点D是AB上一点,满足$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,点E是边CB上一点,满足$\overrightarrow{BE}$=λ$\overrightarrow{BC}$.
①当λ=$\frac{1}{2}$时,求$\overrightarrow{AE}$•$\overrightarrow{CD}$;
②是否存在非零实数λ,使得$\overrightarrow{AE}$⊥$\overrightarrow{CD}$?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题:“?x∈R,sinx≤1”的否定是(  )
A.?x∈R,sinx>1B.?x∈R,sinx≤1C.?x∈R,sinx>1D.?x∈R,sinx≥1

查看答案和解析>>

同步练习册答案