精英家教网 > 高中数学 > 题目详情

【题目】已知函数的部分图象如图所示.

(1) 求函数的解析式;

(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;

(3) 若,求的值.

【答案】(1)(2)见解析(3)

【解析】试题分析:(1)直接由函数图象求得和周期,再由周期公式求得ω,由五点作图的第三点求

(2)由先平移后改变周期和先改变周期后平移两种方法给出答案;

(3)由求出,然后把转化为余弦利用倍角公式得答案.

试题解析:

解:(1).

(2)法1:先将的图象向左平移个单位,再将所得图象纵坐标不变,横坐标压缩为原来的倍,所得图象即为的图象.

法2:先将的图象纵坐标不变,横坐标压缩为原来的倍,再将所得图象向左平移个单位,,所得图象即为的图象.

(3)由,

得:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为(
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1,C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, 与曲线C1交于(不包括极点O)三点A,B,C.

)求证:

)当时,求点B到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素,求a的值并求出这个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(Ⅰ) 求曲线交点的平面直角坐标;

(Ⅱ) 点分别在曲线 上,当最大时,求的面积(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(Ⅰ) 求曲线交点的平面直角坐标;

(Ⅱ) 点分别在曲线 上,当最大时,求的面积(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且f(1)=2,f(2)=3. (I)若f(x)是偶函数,求出f(x)的解析式;
(II)若f(x)是奇函数,求出f(x)的解析式;
(III)在(II)的条件下,证明f(x)在区间 上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面是边长为2的菱形, ,四边形是矩形,平面平面.

(1)在图中画出过点的平面,使得平面(必须说明画法,不需证明);

(2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的4月23日是“世界读书日”,某校研究性学习小组为了解本校学生的阅读情况,随机调查了本校200名学生在这一天的阅读时间 (单位:分钟),将样本数据整理后绘制成如图的样本频率分布直方图.

(1)求的值;

(2)试估计该学校所有学生在这一天的平均阅读时间;

(3)若用分层抽样的方法从这200名学生中,抽出25人参加交流会,则阅读时间为 的两组中各抽取多少人?

查看答案和解析>>

同步练习册答案