【题目】已知函数的部分图象如图所示.
(1) 求函数的解析式;
(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;
(3) 若,求的值.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为( )
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1,C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, , 与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证: ;
(Ⅱ)当时,求点B到曲线C2上的点的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ) 求曲线与交点的平面直角坐标;
(Ⅱ) 点分别在曲线, 上,当最大时,求的面积(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(Ⅰ) 求曲线与交点的平面直角坐标;
(Ⅱ) 点分别在曲线, 上,当最大时,求的面积(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且f(1)=2,f(2)=3. (I)若f(x)是偶函数,求出f(x)的解析式;
(II)若f(x)是奇函数,求出f(x)的解析式;
(III)在(II)的条件下,证明f(x)在区间 上单调递减.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,底面是边长为2的菱形, ,四边形是矩形,平面平面.
(1)在图中画出过点的平面,使得平面(必须说明画法,不需证明);
(2)若二面角是,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年的4月23日是“世界读书日”,某校研究性学习小组为了解本校学生的阅读情况,随机调查了本校200名学生在这一天的阅读时间 (单位:分钟),将样本数据整理后绘制成如图的样本频率分布直方图.
(1)求的值;
(2)试估计该学校所有学生在这一天的平均阅读时间;
(3)若用分层抽样的方法从这200名学生中,抽出25人参加交流会,则阅读时间为, 的两组中各抽取多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com