精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= (a>b>0)的图象是曲线C.

(1)在如图的坐标系中分别做出曲线C的示意图,并分别标出曲线C与x轴的左、右交点A1 , A2
(2)设P是曲线C上位于第一象限的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

【答案】
(1)解:∵f(x)= (a>b>0),

∴y=

∴a2y2=b2(a2﹣x2),∴b2x2+a2y2=b2a2

=1,a>b>0,且y≥0,

其图象表示焦点在x轴上椭圆的一部分,

如图所示,A1 (﹣a,0)、A2(a,0)


(2)解:曲线C的方程是 =1(a>b>0,y≥0),

设 直线A1P的斜率是k,

因为P是曲线C上位于第一象限内的任意一点,所以k∈(0, ).

设P,Q的坐标分别是(x1,y1),(x2,y2),则直线A1P的方程是y=k(x+a),

消去y得,(a2k2+b2)x2+2a3k2x+a2(a2k2﹣b2)=0,

解得x1= ,y1=

将上式中的a换成﹣a,k换成﹣ 得x2= ,y2=

∴KPQ= = (k﹣ ),由于y= (k﹣ )在∈(0, )上单调递增,

∴KPQ= = (k﹣ )< )=

故直线PQ斜率的取值范围为(﹣∞, ).


【解析】(1)化简函数的解析式为 =1,a>b>0,且y≥0,其图象表示焦点在x轴上椭圆的一部分,数形结合求得,A1 和A2的坐标.(2)先考察一般性,直线A1P的方程是y=k(x+a),与椭圆方程联立,求得P,Q的坐标,可得直线PQ斜率,即可求出取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令 ,写出Tn关于n的表达式,并求满足Tn 时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:

气温

0

4

12

19

27

热奶茶销售杯数

150

132

130

104

94

(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程精确到0.1),若某天的气温为,预测这天热奶茶的销售杯数;

(Ⅱ)从表中的5天中任取两天,求所选取两天中至少有一天热奶茶销售杯数大于130的概率.

参考数据:.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=﹣xn+3ax(a∈R,n∈N+),若对任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,则a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

(1)求关于的线性回归方程;

(2)通过(1)中的方程,求出关于的回归方程;

(3)用所求回归方程预测到2010年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某山区养殖场散养的3500头猪中随机抽取5头,测量猪的体长x(cm)和体重y(kg),得如下测量数据:

猪编号

1

2

3

4

5

x

169

181

166

185

180

y

95

100

97

103

101


(1)当且仅当x,y满足:x≥180且y≥100时,该猪为优等品,用上述样本数据估计山区养殖场散养的3500头猪中优等品的数量;
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到一个奇函数,只需将函数f(x)=sin2x﹣ cos2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.

(1)求A,ω,φ的值;
(2)设θ为锐角,且f(θ)=﹣ ,求f(θ﹣ )的值.

查看答案和解析>>

同步练习册答案