精英家教网 > 高中数学 > 题目详情

【题目】本小题满分13分已知函数

求曲线处切线的斜率;

的单调区间;

在区间上的最小值。

【答案】的单调递减区间为;当函数的单调递减区间为单调递增区间为在区间上的最小值为在区间上的最小值为

【解析】

试题利用导数几何意义求切线斜率:故曲线处切线的斜率为因为所以按分类讨论:递减区间为在区间在区间单调递减区间为单调递增区间为根据得到的结论

在区间上的最小值为在区间上的最小值为

试题解析:解:2分

故曲线处切线的斜率为 3

4

由于。所以的单调递减区间为 5

在区间在区间

所以函数的单调递减区间为单调递增区间为 7

综上的单调递减区间为;当函数的单调递减区间为单调递增区间为 8

根据得到的结论

在区间上的最小值为 10

在区间上的最小值为 12

综上在区间上的最小值为在区间上的最小值为 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若曲线在点处的切线与直线垂直,求的单调区间;

2)若函数有两个极值点,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求曲线在点处的切线方程;

)求的单调区间;

)若在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在区间[-c,c]上的奇函数,其图象如下图所示.令g(x)=af(x)+b,则下列关于函数g(x)的结论:

①若a<0,则函数g(x)的图象关于原点对称;

②若a=-1,-2<b<0,则方程g(x)=0有大于2的实根;

③若a0,b=2,则方程g(x)=0有两个实根;

④若a0,b=2,则方程g(x)=0有三个实根.

其中,正确的结论为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为实数.为该函数图象上的两个不同的点.

(1)指出函数的单调区间;

(2)若函数的图象在点处的切线互相平行,求的最小值;

(3)若函数的图象在点处的切线重合,求的取值范围.(只要求写出答案).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查民众对国家实行新农村建设政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持新农村建设人数如下表:

年龄

频数

10

20

30

20

10

10

支持新农村建设

3

11

26

12

6

2

1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对新农村建设政策的支持度有差异;

年龄低于50岁的人数

年龄不低于50岁的人数

合计

支持

不支持

合计

2)为了进一步推动新农村建设政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持新农村建设人数为,试求随机变量的分布列和数学期望.

参考数据:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

对函数Φx),定义fkx)=Φxmk)+nk(其中xmkmmk]kZm0n0,且mn为常数)为Φx)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3

1)当Φx)=2xf0x)和fkx)的解析式;求证:Φx)的各阶阶梯函数图象的最高点共线;

2)若Φx)=x2,则是否存在正整数k,使得不等式fkx)<(13kx4k23k1有解?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案