精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB= b.
(1)求角A的大小;
(2)若0<A< ,a=6,且△ABC的面积S= ,求△ABC的周长.

【答案】
(1)解:由题意2asinB= b.

由正弦定理得:2sinAsinB= sinB.

∵0<B<π,sinB≠0

∴sinA=

∵0<A<π.

∴A=


(2)解:∵△ABC的面积S= ,即 bcsinA=

可得:bc=

由余弦定理得,a2=b2+c2﹣2bccosA=(b+c)2﹣3bc,即36=(b+c)2﹣28,

从而b+c=8

故△ABC的周长l=a+b+c=14.


【解析】(1)由2asinB= b,根据正弦定理化简即可求角A的大小.(2)利用“整体”思想,利用余弦定理求解b+c的值,即可得△ABC的周长.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的结果为80,则判断框内应填入(
A.n≤8?
B.n>8?
C.n≤7?
D.n>7?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知h(x)=|2x﹣1|+m|x+3|(m>0),且h(x)的最小值是7. (Ⅰ)求m的值;
(Ⅱ)求出当h(x)取得最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中说法正确的是(
A.命题“p∨q为真”是命题“p∧q为真”的必要条件
B.向量 满足 ,则 的夹角为锐角
C.若am2≤bm2 , 则a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的纵坐标不变,横坐标变为原来的 ,得曲线C. (Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:3x+y+1=0与C的交点为P1、P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且 .则使得sin2B+sin2C=msinBsinC成立的实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC=a,点P在边AB上,设 (λ>0),过点P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE将△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求证:B′C∥平面A′PE;
(2)是否存在正实数λ,使得二面角C﹣A′B′﹣P的大小为60°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<0,曲线f(x)=2ax2+bx+c与曲线g(x)=x2+alnx在公共点(1,f(1))处的切线相同. (Ⅰ)试求c﹣a的值;
(Ⅱ)若f(x)≤g(x)+a+1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案