精英家教网 > 高中数学 > 题目详情

设等差数列{an}的公差为非零常数d,且a1=1,若a1,a3,a13成等比数列,则公差d=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    5
B
分析:由a1,a3,a13成等比数列,利用等比数列的性质列出关系式,又数列{an}为等差数列,利用等差数列的通项公式化简所得的关系式,把a1的值代入得到关于d的方程,根据d不为0,即可得到满足题意的d的值.
解答:∵a1,a3,a13成等比数列,
∴a32=a1•a13,又数列{an}为等差数列,
∴(a1+2d)2=a1•(a1+12d),又a1=1,
∴(1+2d)2=1+12d,即d(d-2)=0,
由d≠0,可得d=2.
故选B
点评:此题考查了等比数列的性质,以及等差数列的通项公式,熟练掌握性质及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案