精英家教网 > 高中数学 > 题目详情
f(x)=
ln(1+x)
x
(x>0)

(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)是否存在实数a,使得关于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范围,若不存在,试说明理由;
(Ⅲ)求证:(1+
1
n
)n<e,n∈N*
(其中e为自然对数的底数).
分析:(1)已知f(x),构造新的函数g(x),利用导数求函数单调的方法步骤;
(2)将ln(1+x)<ax在(0,+∞)上恒成立等价于ln(1+x)-ax<0在(0,+∞)上恒成立,构造新的函数h(x)=ln(1+x)-ax,x∈[0,+∞),依题意,我们所要求的a的取值范围,需要满足以下条件:能够使得h(x)在[0,+∞)上单调递减.
(3)由(2)可知
ln(1+x)
x
<1
在(0,+∞)上恒成立,可以得到(1+x)
1
x
<e,只需令
1
x
=n,即可.
解答:证明:(1)∵f(x)=
ln(1+x)
x
,(x>0)

f′(x)=
x
1+x
-ln(1+x)
x2

g(x)=
x
1+x
-ln(1+x),(x≥0)

g′(x)=
1+x-x
(1+x)2
-
1
1+x
=
1-(1+x)
(1+x)2
=
-x
(1+x)2
≤0

∴y=g(x)在[0,+∞)上为减函数.
g(x)=
x
1+x
-ln(1+x)≤g(0)=0

f′(x)=
x
1+x
-ln(1+x)
x2
<0

∴函数f(x)=
ln(1+x)
x
在(0,+∞)上为减函数.
(2)ln(1+x)<ax在(0,+∞)上恒成立,?ln(1+x)-ax<0在(0,+∞)上恒成立,
设h(x)=ln(1+x)-ax,则h(0)=0,
h′(x)=
1
1+x
-a

若a≥1,则x∈[0,+∞)时,h′(x)=
1
1+x
-a≤0
恒成立,
∴h(x)=ln(1+x)-ax在[0,+∞)上为减函数
∴ln(1+x)-ax<h(0)=0在(0,+∞)上恒成立,
∴ln(1+x)<ax在(0,+∞)上恒成立,
若a≤0显然不满足条件,
若0<a<1,则h′(x)=
1
1+x
-a=0
时,x=
1
a
-1

x∈[0,
1
a
  时h'(x)≥0,
∴h(x)=ln(1+x)-ax在[0,
1
a
  上为增函数,
x∈[0,
1
a
  时,h(x)=ln(1+x)-ax>0,
不能使ln(1+x)<ax在(0,+∞)上恒成立,
∴a≥1
(3)由(2)可知
ln(1+x)
x
<1
在(0,+∞)上恒成立,
ln(1+x)
1
x
<1
,即(1+x)
1
x
<e

1
x
=n
,即可证得(1+
1
n
)n<e
对一切正整数n成立.
点评:本题综合性较强,主要考查利用导数研究函数的单调性,以此为主线,贯穿其中.但对以上三个问题的解答,关键是构造函数,这是函数这一章节的重点和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=ln(1+a-2x)(a>0),则f′(0)=_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ln(1+a-2x),则f′(0)=____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=
ln(1+x)
x
(x>0)

(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)是否存在实数a,使得关于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范围,若不存在,试说明理由;
(Ⅲ)求证:(1+
1
n
)n<e,n∈N*
(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ln(1+a-2x),则f′(0)=___________.

查看答案和解析>>

同步练习册答案