精英家教网 > 高中数学 > 题目详情

【题目】己知函数处的切线方程为,函数.

(1)求函数的解析式;

(2)求函数的极值;

(3)设表示中的最小值),若上恰有三个零点,求实数的取值范围.

【答案】(1);(2)极小值,无极大值.(3)

【解析】

1)先求得函数导数,利用切点坐标和函数在时切线的斜率也即导数列方程组,解方程组求得的值,进而求得函数的解析式.2)先求得的定义域和导函数,对分成两种情况,通过函数的单调性讨论函数的极值.3)先根据(1)判断出有且仅有一个零点,故需上有仅两个不等于1的零点.根据(2)判断出当时,没有三个零点;当时,通过零点存在性定理以及利用导数的工具作用,证得分别在分别有个零点,符合题意.由此求得实数的取值范围.

解:(1)

因为处的切线方程为

所以

解得

所以

(2)的定义域为

①若时,则上恒成立,

所以上单调递增,无极值

②若时,则当时,上单调递减;

时,上单调递增;

所以当时,有极小值,无极大值.

(3)因为仅有一个零点1,且恒成立,

所以上有仅两个不等于1的零点.

①当时,由(2)知,上单调递增,

上至多一个零点,不合题意,舍去

②当时,无零点

③当时,,当且仅当等号成立,仅一个零点

④当时,,所以

图象不间断,上单调递减

故存在,使

下面证明,当时,

上单调递增

所以

图象在上不间断,上单调递增,

故存在,使

综上可知,满足题意的的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为,且甲、乙两人是否答对每个试题互不影响.

1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;

2)若答对一题得5分,答错或不答得0分,记乙答题的得分为,求的分布列及数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形中, ,现将沿折起,使折到的位置且在面的射影恰好在线段上.

(Ⅰ)证明:

(Ⅱ)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在交通工程学中,常作如下定义:交通流量(辆/小时):单位时间内通过道路上某一横断面的车辆数;车流速度(千米/小时):单位时间内车流平均行驶过的距离;车流密度(辆/千米):单位长度道路上某一瞬间所存在的车辆数. 一般的,满足一个线性关系,即(其中是正数),则以下说法正确的是

A. 随着车流密度增大,车流速度增大

B. 随着车流密度增大,交通流量增大

C. 随着车流密度增大,交通流量先减小,后增大

D. 随着车流密度增大,交通流量先增大,后减小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分二层)从该年级的学生中共抽查100名同学.

1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);

2)如果以身高达到作为达标的标准,对抽取的100名学生,得到列联表:

体育锻炼与身高达标列联表

身高达标

身高不达标

合计

积极参加体育锻炼

60

不积极参加体育锻炼

10

合计

100

①完成上表;

②请问有多大的把握认为体育锻炼与身高达标有关系?

参考公式:.

参考数据:

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于 两点,直线 分别与轴交于点

(Ⅰ)求椭圆的方程;

(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,,点在棱上移动,则直线所成角的大小是__________,若,则__________

查看答案和解析>>

同步练习册答案