精英家教网 > 高中数学 > 题目详情
8.若sinα=$\frac{2m-1}{5}$,则m的取值范围可用区间表示为m∈[-2,3].

分析 根据正弦函数的有界性,得出不等式-1≤$\frac{2m-1}{5}$≤1,求出m的取值范围即可.

解答 解:∵sinα=$\frac{2m-1}{5}$,
∴-1≤$\frac{2m-1}{5}$≤1,
即-5≤2m-1≤5;
∴-4≤2m≤6,
∴-2≤m≤3;
∴m的取值范围是[-2,3].
故答案为:[-2,3].

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知$α∈(\frac{π}{2},π)$,sin$α=\frac{2\sqrt{5}}{5}$,则tan($α-\frac{π}{4}$)3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.判断函数f(x)=$\frac{1}{1+{2}^{x}}$的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$,g(x)=x+2.
(1)若f(g(a))=g(f(-1)),求a的值;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在直角坐标系中,曲线C1:$\left\{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}\right.$ (其中θ为参数),直线C2:$\left\{\begin{array}{l}{x=\frac{4}{5}t-4}\\{y=\frac{3}{5}t}\end{array}\right.$(其中t为参数).点F(-4,0),曲线C1与直线C2相交于点A、B,求|FA|•|FB|的值. 
(2)在极坐标系中,直线l:ρcos(θ-$\frac{π}{3}$)=2,与以点M(4,π)为圆心,以5为半径的圆相交于P、Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为板轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.根据表格内容填空:
x-202
y0-40
(1)写出经过这些点的二次函数解析式y=x2-4;
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是反比例函数,且f(2)=-4,则f(x)=(  )
A.-2xB.3x-10C.-$\frac{x}{8}$D.-$\frac{8}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简:sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R.

查看答案和解析>>

同步练习册答案