分析 由题意画出图形,判断四边形面积最小时P的位置,利用点到直线的距离求出PC,然后求出∠P的大小.
解答 解:圆C:x2+y2-2x-2y+1=0,即圆C:(x-1)2+(y-1)2=1,圆心坐标(1,1),半径为1;
由题意过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,
可知四边形PACB的面积是两个三角形的面积的和,因为CA⊥PA,CA=1,
显然PC最小时四边形面积最小,
即PC最小值=$\frac{|3+4+3|}{5}$=2.
sin∠CPA=$\frac{CA}{CP}$=$\frac{1}{2}$,
∴∠CPA=30°,所以∠P=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题考查直线与圆的位置关系,正确判断四边形面积最小时的位置是解题的关键,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 4.1 | C. | 4.2 | D. | 4.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=sinx | B. | y=-|x+1| | C. | $y=ln\frac{2-x}{2+x}$ | D. | y=$\frac{1}{2}$(2x+2-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com