精英家教网 > 高中数学 > 题目详情
13.设P为直线3x+4y+3=0上的动点,过点P做圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,当四边形PACB的面积最小时,∠APB=$\frac{π}{3}$.

分析 由题意画出图形,判断四边形面积最小时P的位置,利用点到直线的距离求出PC,然后求出∠P的大小.

解答 解:圆C:x2+y2-2x-2y+1=0,即圆C:(x-1)2+(y-1)2=1,圆心坐标(1,1),半径为1;
由题意过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,
可知四边形PACB的面积是两个三角形的面积的和,因为CA⊥PA,CA=1,
显然PC最小时四边形面积最小,
即PC最小值=$\frac{|3+4+3|}{5}$=2.
sin∠CPA=$\frac{CA}{CP}$=$\frac{1}{2}$,
∴∠CPA=30°,所以∠P=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查直线与圆的位置关系,正确判断四边形面积最小时的位置是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\left\{\begin{array}{l}{2x-1,x<0}\\{3-x,x≥0}\end{array}\right.$,求f(x)>-1的解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.用1,2,3和两个0随机组成一个5位数,则这个5位数中两个0相邻的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线f(x)=x2上两点A(2,4)和B(2+d,f(2+d))),作割线,当d=0.1时,割线的斜率是(  )
A.4B.4.1C.4.2D.4.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设P是双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$上的动点,若P到两条渐近线的距离分别为d1,d2,则d1•d2=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中既是奇函数又在区间,[-1,1]上单调递减的是(  )
A.y=sinxB.y=-|x+1|C.$y=ln\frac{2-x}{2+x}$D.y=$\frac{1}{2}$(2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,P为⊙O外一点,PC交⊙O于F,C,PA切⊙O于A,B为线段PA的中点,BC交⊙O于D,线段PD的延长线与⊙O交于E,连接FE.求证:
(Ⅰ)△PBD∽△CBP;
(Ⅱ)AP∥FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在平而直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$,(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρ=\frac{a}{cosθ-2sinθ}$(a为非零常数).
(I)求曲线C和直线l的普通方程:
(Ⅱ)若曲线C上有且只有三个点到直线1的距离为$\frac{3\sqrt{5}}{5}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙、丙三支球队进行某种比赛,其中两队比赛,另一队当裁判,每局比赛结束时,负方在下一局当裁判.设各局比赛双方获胜的概率均为$\frac{1}{2}$,各局比赛结果相互独立,且没有平局,根据抽签结果第一局甲队当裁判
(Ⅰ)求第四局甲队当裁判的概率;
(Ⅱ)用X表示前四局中乙队当裁判的次数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案