Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ4£¬µãP´ÓBµã³ö·¢£¬ÔÚÕý·½ÐÎBCC1B1µÄ±ßÉÏ°´ÄæÕë·½Ïò°´ÈçϹæÂÉÔ˶¯£ºÉèµÚn´ÎÔ˶¯µÄ·³ÌΪan£¬ÇÒan=cos
n¦Ð2
+2
£¬µÚn´ÎÔ˶¯ºóPµãËùÔÚλÖÃΪPn£¬»Øµ½Bµãºó²»ÔÙÔ˶¯£®
£¨1£©Çó¶þÃæ½ÇPi-AC-BµÄÓàÏÒÖµ£»
£¨2£©ÊÇ·ñ´æÔÚÕýÕûÊýi¡¢j£¬Ê¹µÃÖ±ÏßPiPjÓëƽÃæACD1ƽÐУ¿Èô´æÔÚ£¬ÕÒ³öËùÓзûºÏÌõ¼þµÄPiPj£¬²¢¸ø³öÖ¤Ã÷£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÏÈÓÉan=cos
n¦Ð
2
+2
ÇóµÃµ±n=1¡¢2¡¢3¡¢4¡¢5¡¢6¡¢7¡¢8ʱµÄanµÄÖµ£¬ÕÒ³ö¶ÔÓ¦µÄPi£¨i=1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£©µÄλÖã¬È»ºó¸ù¾ÝPiµÄ²»Í¬Î»ÖÃÇó½â¶þÃæ½ÇPi-AC-BµÄÓàÏÒÖµ£»
£¨2£©ÓÉÏßÃæƽÐеÄÅж¨¶¨Àí£¬·ÖÎöPi£¨i=1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£©µÄ8¸öµãÖÐÓÐÄÄЩµãµÄÁ¬ÏßÄܹ»ÓëƽÃæACD1ÄÚµÄÏßƽÐУ¬ÕÒ³öÓëƽÃæACD1ÄÚƽÐеÄÏß¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉan=cos
n¦Ð
2
+2
£¬Öª£ºa1=a5=2£¬a2=a6=1£¬a3=a7=2£¬a4=a8=3£®
µ±i=1¡¢2¡¢8ʱ£¬µãP1£¬P2£¬P8λÓÚÏ߶ÎBCÉÏ£¬´Ëʱ¶þÃæ½ÇPi-AC-BµÄƽÃæ½ÇΪ0¡ã£¬ËùÒÔ£¬¶þÃæ½ÇµÄÓàÏÒÖµµÈÓÚ1£»
µ±i=3¡¢4ʱ£¬P3¡¢P4λÓÚƽÃæACC1ÉÏ£¬´Ëʱ¶þÃæ½ÇPi-AC-BµÄ´óСΪ90¡ã£¬ËùÒÔ£¬¶þÃæ½ÇµÄÓàÏÒÖµµÈÓÚ0£»
È»ºóÒÔDΪԭµã£¬·Ö±ðÒÔDA£¬DC£¬DD1ËùÔÚÖ±ÏßΪx¡¢y¡¢zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£®
µ±i=5»ò6ʱ£¬µãP5£¬P6λÓÚÏ߶ÎC1B1ÉÏ£¬´ËʱP5£¨2£¬4£¬4£©£¬P6£¨3£¬4£¬4£©£¬A£¨4£¬0£¬0£©£¬C£¨0£¬4£¬0£©
ËùÒÔ
AP5
=(-2£¬4£¬4)£¬
CP5
=(2£¬0£¬4)
£¬
AP6
=(-1£¬4£¬4)£¬
CP6
=(3£¬0£¬4)
£¬
ÉèƽÃæAP5CµÄ·¨ÏòÁ¿Îª
a
=(x1£¬y1£¬z1)
£¬Æ½ÃæAP6CµÄ·¨ÏòÁ¿Îª
c
=(x2£¬y2£¬z2)
£¬
ÓÉ
a
AP5
=0
a
CP5
=0
-2x1+4y1+4z1=0
2x1+4z1=0
£¬È¡z1=1£¬µÃx1=-2£¬y1=-2£¬
ËùÒÔ
a
=(-2£¬-2£¬1)

ÓÉ
c
AP6
=0
c
CP6
=0
-x2+4y2+4z2=0
3x2+4z2=0
£¬È¡z2=3£¬µÃx2=-4£¬y2=-4£¬
ËùÒÔ
c
=(-4£¬-4£¬3)
£¬
ÓÉÌâÒâ֪ƽÃæABCµÄÒ»¸ö·¨ÏòÁ¿Îª
b
=(0£¬0£¬1)
£¬
ÔÙÉè¶þÃæ½ÇP5-AC-B=¦Á£¬¶þÃæ½ÇP6-AC-B=¦Â£¬
ËùÒÔcos¦Á=
a
b
|
a
||
b
|
=
1
3
£¬cos¦Â=
b
c
|
b
||
c
|
=
3
41
=
3
41
41

µ±i=7ʱ£¬P7ÔÚÏ߶ÎBB1ÉÏ£¬È¡ACÖеãE£¬Á¬½ÓBE¡¢P7E£¬Ôò¡ÏP7EBΪ¶þÃæ½ÇP7-AC-BµÄƽÃæ½Ç£¬
ÔÚÖ±½ÇÈý½ÇÐÎP7BEÖУ¬BE=
1
2
BD=2
2
£¬P7B=
3
4
BB1=3
£¬ËùÒÔP7E=
17
£¬ËùÒÔcos¡ÏP7EB=
2
34
17
£®
£¨2£©´æÔÚÕýÕûÊýi=2£¬j=3£»i=4£¬j=8£»i=6£¬j=7ʹµÃÖ±ÏßPiPjÓëƽÃæACD1ƽÐУ¬
¡ßP2P3£¬P4P8£¬P6P7¾ù²»ÔÚƽÃæACD1ÄÚ£¬ÇÒ¶¼Æ½ÐÐÓÚAD1£¬¶øAD1?ÃæACD1£¬
¸ù¾ÝÏßÃæƽÐеÄÅж¨¿ÉµÃÈýÌõÖ±Ïß¾ùƽÐÐÓÚƽÃæACD1£®
µãÆÀ£º±¾Ì⿼²éÁ˶þÃæ½ÇµÄƽÃæ½ÇµÄÇ󷨣¬¿¼²éÁËƽÃæÓëƽÃæ´¹Ö±µÄÐÔÖʼ°Ö±ÏßÓëƽÃæƽÐеÄÅж¨£¬¿¼²éÁË·ÖÎöÎÊÌâµÄÄÜÁ¦ºÍÔËËãÄÜÁ¦£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪa£¬ËüµÄ¸÷¸ö¶¥µã¶¼ÔÚÇòOµÄÇòÃæÉÏ£¬ÎÊÇòOµÄ±íÃæ»ý£®
£¨1£© Èç¹ûÇòOºÍÕâ¸öÕý·½ÌåµÄÁù¸öÃ涼ÏàÇУ¬ÔòÓÐS=
 
£®
£¨2£©Èç¹ûÇòOºÍÕâ¸öÕý·½ÌåµÄ¸÷ÌõÀⶼÏàÇУ¬ÔòÓÐS=
 
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬E£¬F·Ö±ðΪBB1ºÍA1D1µÄÖе㣮֤Ã÷£ºÏòÁ¿
A1B
¡¢
B1C
¡¢
EF
Êǹ²ÃæÏòÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÀⳤΪ8£¬E¡¢F·Ö±ðΪAD1£¬CD1Öе㣬G¡¢H·Ö±ðΪÀâDA£¬DCÉ϶¯µã£¬ÇÒEH¡ÍFG£®
£¨1£©ÇóGH³¤µÄÈ¡Öµ·¶Î§£»
£¨2£©µ±GHÈ¡µÃ×îСֵʱ£¬ÇóÖ¤£ºEHÓëFG¹²Ã棻²¢Çó³ö´ËʱEHÓëFGµÄ½»µãPµ½Ö±ÏßB1BµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬ÈôE¡¢F¡¢G·Ö±ðΪÀâBC¡¢C1C¡¢B1C1µÄÖе㣬O1¡¢O2·Ö±ðΪËıßÐÎADD1A1¡¢A1B1C1D1µÄÖÐÐÄ£¬ÔòÏÂÁи÷×éÖеÄËĸöµã²»ÔÚͬһ¸öƽÃæÉϵÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬E¡¢F¡¢G¡¢H·Ö±ðÊÇËùÔÚÀâµÄÈýµÈ·Öµã£¬ÇÒBF=DE=C1G=C1H=
13
AB
£®
£¨1£©Ö¤Ã÷£ºÖ±ÏßEHÓëFG¹²Ã棻
£¨2£©ÈôÕý·½ÌåµÄÀⳤΪ3£¬Ç󼸺ÎÌåGHC1-EFCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸