精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且
3
(tanA-tanB)=1+tanA•tanB.
(1)若a2-ab=c2-b2,求A、B、C的大小;
(2)已知向量
m
=(sinA,cosA)
n
=(cosB,sinB)
,求|3
m
-2
n
|的取值范围.
分析:利用
3
(tanA-tanB)=1+tanA•tanB求出A-B的值,
(1)通过余弦定理求出C的大小,得到A+B的值,即可求解A,B的值.
(2)直接求解模的平方,通过向量的数量积,利用两角和正弦函数公式化简表达式,结合A,B,C的范围,求出正弦函数的范围,然后|3
m
-2
n
|的取值范围.
解答:解:因为
3
(tanA-tanB)=1+tanA•tanB,
所以tan(A-B)=
tanA-tanB
1+tanA•tanB
=
3
3

A-B=
π
6
.…(2分)
(1)因为a2+b2-2abcosC=c2,所以cosC=
1
2
,∴C=
π
3
,…(4分)
A+B=
3
,又A-B=
π
6

A=
12
B=
π
4
.…(6分)
(2)因为向量
m
=(sinA,cosA)
n
=(cosB,sinB)

|3
m
-2
n
|2=13-12
m
• 
n
=13-12sin(A+B)=13-12sin(2A-
π
6
)
…(8分)
0<A<
π
2
0<B<
π
2
0<C<
π
2
0<A<
π
2
0<A-
π
6
π
2
0<π-2A+
π
6
π
2
π
6
<A<
π
2
.…(10分)
π
6
<2A-
π
6
6
6<12sina(2A-
π
6
)≤12

1≤|3m-2n|<
7
.…(12分)
点评:本题是中档题,考查两角和正切、正弦函数以及向量的数量积、模的求法,考查计算能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,已知BC=1,B=2A
(1)求
ACcosA
的值;
(2)求AC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且满足2sinBcosB=-
3
cos2B

(1)求B的大小;
(2)如果b=
7
a=2,求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知a、b、c分别是三内角A、B、C所对应的边长,且b=2asinB.
(1)求角A的大小;       
(2)若b=1,且△ABC的面积为
3
3
4
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知内角A、B、C所对的边分别为a、b、c,且满足2sinB(2cos2
B
2
-1)=-
3
cos2B.
(1)求B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知cosA=
1
2
,BC=
3
,记△ABC的周长为f(B).
(1)求函数y=f(B)的解析式和定义域,并化简其解析式;
(2)若f(B)=
3
+
6
,求f(B-
π
2
)
的值.

查看答案和解析>>

同步练习册答案