精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期及单调减区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

分析 (1)利用三角恒等变换化简函数f(x),求出f(x)的最小正周期以及单调减区间;
(2)求出x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时2x+$\frac{π}{6}$的取值范围,即可得出f(x)的最大值与最小值.

解答 解:(1)函数f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1
=$\sqrt{3}$sin2x+cos2x
=2sin(2x+$\frac{π}{6}$);---------(2分)
∴f(x)的最小正周期为T=$\frac{2π}{2}$=π,-------------(4分)
由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$
得:$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ$,
∴f(x)的单调减区间为$[\frac{π}{6}+kπ,\frac{2π}{3}+kπ],k∈z$;-----------------(6分)
(2)∵x∈[-$\frac{π}{6}$,$\frac{π}{3}$],
∴-$\frac{π}{6}$≤2x+$\frac{π}{6}$≤$\frac{5π}{6}$,----------------(8分)
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1,即-1≤f(x)≤2;------------------(10分)
∴当$2x+\frac{π}{6}=-\frac{π}{6}$,即x=-$\frac{π}{6}$时,f(x)取得最小值为-1;---------------(12分)
当$2x+\frac{π}{6}=\frac{π}{2}$,即$x=\frac{π}{6}$时,f(x)取得最大值为2.-----------------(14分)

点评 本题考查了三角恒等变换以及三角函数的图象与性质的应用问题,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求下列函数的导数:
(1)y=(2x3-1)(3x2+x);
(2)y=3(2x+1)2-4x;
(3)y=$\frac{sinxlnx}{x}$;
(4)y=extanx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα+cosα=$\frac{\sqrt{3}}{2}$,且α∈(0,π),则sin2α的值为(  )
A.-$\frac{\sqrt{15}}{4}$B.-$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三角形ABC的顶点都在半径为R的球O的球面上,AB⊥BC,AB=6,BC=8,棱锥O-ABC的体积为40,则球的表面积为(  )
A.250πB.200πC.100πD.50π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知奇函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x(x>0)\\ 0,(x=0)\\{x^2}+mx(x<0)\end{array}$
(1)在给出的直角坐标系中画出y=f(x)的图象,并求实数m的值;
(2)若函数f(x)在区间[2a-1,a+1]上单调递增,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知三棱锥O-ABC中,A、B、C三点在以O为球心的球面上,若AB=BC=1,∠ABC=120°,三棱锥O-ABC的体积为$\frac{\sqrt{5}}{4}$,则球O的表面积为(  )
A.$\frac{32}{3}$πB.16πC.64πD.544π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)=$\left\{\begin{array}{l}{x+1,(x>0)}\\{π,(x=0)}\\{0,(x<0)}\end{array}\right.$,则f(f(f(-1)))=(  )
A.0B.π+1C.πD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=f′(1)x3-2x2+3,则f′(1)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化3$\sqrt{3\sqrt{3\sqrt{3}}}$为分数指数幂结果是(  )
A.3${\;}^{\frac{7}{8}}$B.3${\;}^{\frac{15}{8}}$C.3${\;}^{\frac{7}{4}}$D.3${\;}^{\frac{17}{8}}$

查看答案和解析>>

同步练习册答案