分析 (1)利用三角函数恒等变换的应用化简解析式为f(x)=sin(2x+$\frac{π}{6}$)+1,利用周期公式即可计算得解.
(2)由范围x∈[-$\frac{π}{6}$,$\frac{π}{4}$],利用正弦函数的性质可求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域,分类讨论,解方程组即可得解.
解答 (本题满分为10分)
解:(1)∵f(x)=$\frac{\sqrt{3}}{3}$[cos(2x+$\frac{π}{6}$)+4sinxcosx]+1
=$\frac{\sqrt{3}}{3}$[$\frac{\sqrt{3}}{2}$cos2x-$\frac{1}{2}$sin2x+2sin2x]+1
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+1
=sin(2x+$\frac{π}{6}$)+1,…(3分)
∴T=$\frac{2π}{2}$=π. …(4分)
(2)∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],
∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],可得:sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域为[$\frac{1}{2}$,2],…(6分)
∵g(x)=af(x)+b,
∴①当a>0时,$\left\{\begin{array}{l}{2a+b=1}\\{\frac{1}{2}a+b=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{4}{3}}\\{b=-\frac{5}{3}}\end{array}\right.$,
∴a+b=-$\frac{1}{3}$,…(8分)
②当a<0时,$\left\{\begin{array}{l}{2a+b=-1}\\{\frac{1}{2}a+b=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{4}{3}}\\{b=\frac{5}{3}}\end{array}\right.$,
∴a+b=$\frac{1}{3}$. …(10分)
点评 本题主要考查了三角函数恒等变换的应用,周期公式及正弦函数的图象和性质的应用,考查了方程思想和转化思想的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=x2+bx-1(b∈R) | B. | f(x)=|x2-1| | C. | f(x)=2-|x-1| | D. | f(x)=x3+2x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com