精英家教网 > 高中数学 > 题目详情

【题目】设P为双曲线 右支上一点,M,N分别是圆(x+4)2+y2=4和(x﹣4)2+y2=1上的点,设|PM|﹣|PN|的最大值和最小值分别为m,n,则|m﹣n|=(
A.4
B.5
C.6
D.7

【答案】C
【解析】解:圆C1:(x+4)2+y2=4的圆心为(﹣4,0),半径为r1=2;

圆C2:(x﹣4)2+y2=1的圆心为(4,0),半径为r2=1,

设双曲线 的左右焦点为F1(﹣4,0),F2(4,0),

连接PF1,PF2,F1M,F2N,

可得|PF1|﹣|PF2|=2是定值,|PM|=|PF1|+r1

|PN|=(|PF2|﹣r2),所以|PM|﹣|PN|的最大值2a+r1+r2=5,

|PM|=|PF1|﹣r1

|PN|=(|PF2|+r2),所以|PM|﹣|PN|的最小值:2a﹣r1﹣r2=﹣1.

可得m=5,n=﹣1,则|m﹣n|=6.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex﹣ax2 , g(x)是f(x)的导函数. (I)求g(x)的极值;
(II)证明:对任意实数x∈R,都有f′(x)≥x﹣2ax+1恒成立:
(Ⅲ)若f(x)≥x+1在x≥0时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个正方体的玩具,六个面标注了数字1,2,3,4,5,6,甲、乙两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字 ,再由乙抛掷一次,记下正方体朝上数字 ,若 就称甲、乙两人“默契配合”,则甲、乙两人“默契配合”的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要分析学生初中升学考试的数学成绩对高一年级数学学习有什么影响,在高一年级学生中随机抽取10名学生,分析他们入学的数学成绩(x)和高一年级期末数学考试成绩(y)(如下表):

编号

1

2

3

4

5

6

7

8

9

10

x

63

67

45

88

81

71

52

99

58

76

y

65

78

52

85

92

89

73

98

56

75


(1)画出散点图;
(2)判断入学成绩(x)与高一期末考试成绩(y)是否有线性相关关系;
(3)如果x与y具有线性相关关系,求出回归直线方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:

高一年级

高二年级

高三年级

跑步人数

a

b

c

登山人数

x

y

z

其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的 .为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )
A.15人
B.30人
C.40人
D.45人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则将f(x)的图象向右平移 个单位所得曲线的一条对称轴的方程是(
A.x=π
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长都相等的四面体PABC中,DEF分别是ABBCCA的中点,则下面四个结论中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将下列集合用区间表示出来:
(1)
(2)
(3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论不正确的是(填序号).
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>

同步练习册答案