精英家教网 > 高中数学 > 题目详情
点P(x,y)在不等式组
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面区域上运动,则z=x+y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A(2,1)时,直线y=-x+z的截距最大,
此时z最大.
代入目标函数z=x+y得z=2+1=3.
即目标函数z=x+y的最大值为3.
故答案为:3.
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
3
+α)+sinα=
4
3
5
,则sin(α+
6
)的值是(  )
A、-
2
3
5
B、
2
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1-x).
(1)求f(x)及g(x)的解析式;
(2)求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,[x]表示不超过x的最大整数,若函数f(x)=
[x]
2x
-a(x≠0)
有且仅有3个零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且满足S17>0,S18<0,则
S1
a1
S2
a2
,…,
Sn
an
 (n∈N*,n≤18))中最大的项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,且f(x)满足f(x+π)=f(x),当[0,
π
2
)时,f(x)=tanx,则f(
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,g(x)是偶函数,则(  )
A、f(x)g(x)是偶函数
B、f(x)g(x)是奇函数
C、f(x)+g(x)是偶函数
D、f(x)+g(x)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1与抛物线C2:y2=8x有相同焦点F,它们在第一象限内的交点为M,若双曲饯C1的焦距为实轴长的2倍,则|MF|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式1≤|x-2|≤7的解集为(  )
A、{x|x≤1或x≥3}
B、{x|1≤x≤3}
C、{x|-5≤x≤1或3≤x≤9}
D、{x|-5≤x≤9}

查看答案和解析>>

同步练习册答案