精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者.若f(a+2)>f(a),则实数a的取值范围为(  )
A.(-1,0)B.[-2,0]C.(-∞,-2)∪(-1,0)D.[-2,+∞)

分析 在同一坐标系内画出三个函数y=1-x,y=x+1,y=x2-1的图象,以此作出函数f(x)图象,观察最小值的位置,通过图象平移,可得a<-1,且(a+2)2-1>a+1,①或-(a+2)+1>a2-1,②,解不等式即可得到所求范围.

解答 解:f(x)=min{x2-1,x+1,-x+1}
=$\left\{\begin{array}{l}{x+1,x<-1}\\{{x}^{2}-1,-1≤x≤1}\\{-x+1,x>1}\end{array}\right.$,
作出f(x)的图象,可得
f(a+2)>f(a)变为
a<-1,且(a+2)2-1>a+1,①
或-(a+2)+1>a2-1,②
①变为a2+3a+2>0,解得a<-2;
②变为a2+a<0,解得-1<a<0.
则实数a的取值范围为(-∞,-2)∪(-1,0).
故选C.

点评 本题考查了函数的概念、图象、最值问题.利用了数形结合的方法.关键是通过题意得出f(x)的简图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知△ABC的面积为S,且$\overrightarrow{AB}•\overrightarrow{AC}=S$.
(1)求sinA,cosA,tan2A的值;
(2)若$B=\frac{π}{4},\;\;|{\overrightarrow{CA}-\overrightarrow{CB}}|=6$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱ABC-A′B′C′中,底面是等腰直角三角形,∠ACB=90°,侧棱AA′=2,BC=AC=1,D,E分别是CC′、A′B的中点.
(1)求异面直线CE与BD所成角的余弦值;
(2)在CC′上是否存在一点P,使得PE⊥平面ABD?若存在,请求出CP的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设an=(2n+1)p,bn=(2n)p+(2n-1)p,其中p,n∈N+
(1)当p=2时,试比较an与bn的大小;
(2)当p=n时,求证:an≥bn对?n∈N+恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=sin({ωx+\frac{π}{4}})$在$({\frac{π}{2},π})$上单调递减,则正实数ω的取值范围是[$\frac{1}{2}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选科方案有10种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-1,2],图象如图2所示.A={x|f(g(x))=0},B={x|g(f(x))=0},则A∩B中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,得曲线C的极坐标方程为ρ=2sinθ.
(1)求C的参数方程;
(2)若直线l:$\sqrt{3}$x-y+m=0与曲线C相切,求切点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BB1,CD的中点,则点F到平面A1D1E的距离为(  )
A.$\frac{3}{10}$aB.$\frac{3\sqrt{7}}{10}$aC.$\frac{3\sqrt{5}}{10}$aD.$\frac{7}{10}$a

查看答案和解析>>

同步练习册答案