【题目】如图是某算法的程序框图,若程序运行后输出的结果是14,则判断框内填入的条件可以是( )
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?
科目:高中数学 来源: 题型:
【题目】如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点为的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点),再沿直线裁剪.
(1)当时,试判断四边形的形状,并求其面积;
(2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点
(1)求证:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0
(1)若直线l与曲线C没有公共点,求m的取值范围;
(2)若m=0,求直线l被曲线C截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线C的顶点在原点O,过点,其焦点F在x轴上.
求抛物线C的标准方程;
斜率为1且与点F的距离为的直线与x轴交于点M,且点M的横坐标大于1,求点M的坐标;
是否存在过点M的直线l,使l与C交于P、Q两点,且若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2是双曲线C1: ﹣ =1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|= |F1F2|,其中O为坐标原点,则双曲线C1的离心率是( )
A.2+
B.1+
C.2+
D.1+
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某零售店近5个月的销售额和利润额资料如下表:
商店名称 | |||||
销售额/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).
[参考公式:,]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com