【题目】(本小题满分14分)
如图,边长为4的正方形中,点分别是上的点,将折起,使两点重合于.
(1)求证:;
(2)当时,
求四棱锥的体积.
科目:高中数学 来源: 题型:
【题目】对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为 “()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对;
(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时, ,若当时,都有,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分,第(1)问 5分,第(2)问 5 分)
近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的名顾客进行统计,其中岁以下占,采用微信支付的占, 岁以上采用微信支付的占。
(1)请完成下面列联表:
岁以下 | 岁以上 | 合计 | |
使用微信支付 | |||
未使用微信支付 | |||
合计 |
(2)并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?
参考公式: , .
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒,则在另外一组中逐个进行化验.
(1)求依据方案乙所需化验恰好为2次的概率.
(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列对应是否为集合A到集合B的函数.
(1)A=R,B={x|x>0},f:x→y=|x|;
(2)A=Z,B=Z,f:x→y=x2;
(3)A=Z,B=Z,f:x→y=;
(4)A={x|-1≤x≤1},B={0},f:x→y=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前三项与数列{bn}的前三项相同,且a1+2a2+22a3+…+2n-1an=8n对任意n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得(bk-ak)∈(0,1)?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com