精英家教网 > 高中数学 > 题目详情
10.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)>0恒成立,则称函数y=f(x)在(a,b)上为“凹函数”,若函数f(x)=-$\frac{1}{6}$x3+x2-aex+2在R上是“凹函数”,求实数a的取值范围.

分析 利用导数的运算法则可得f′(x),f″(x).由于函数f(x)在区间(a,b)上为“凹函数”,可得:在区间(a,b)上f″(x)>0恒成立,解得即可.

解答 解:f′(x)=-$\frac{1}{2}$x2+2x-ae,f″(x)=-x+2,
∵函数f(x)=-$\frac{1}{6}$x3+x2-aex+2在R上是“凹函数”,
∴在(a,b)上,f″(x)>0恒成立,
∴-x+2>0,
即x<2,
∴a≤2.

点评 本题考查了“凹函数”的定义及其性质、导数的运算法则、恒成立问题的等价转化,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.解方程:2x3-5x2+x+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an},{bn},a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-2n-1.(n(n-1)(n-2)…3•2•1=n!).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{$\frac{{b}_{n}}{{2}^{n}}$}为等差数列;
(Ⅲ)若cn=$\frac{{a}_{n}}{{a}_{n+2}}$+bn-2,求{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,且a=2bsinA,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.作出f(x)=x2-a|x-1|(x∈R,a<0)的图象,并求出此函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{x+2}{3x-1}$(x∈[1,3])的值域为[$\frac{5}{8}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合A={x|x=3m,m∈Z}.B={x|x=6k,k∈Z},则集合A,B之间是什么关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}满足an+1=$\frac{1}{1-{a}_{n}}$,a7=$\frac{1}{2}$,则a1=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案