分析:(Ⅰ)由S
1=a
1=1,S
2=1+a
2,得3t(1+a
2)-(2t+3)=3t,
a2==,又3tS
n-(2t+3)S
n-1=3t,3tS
n-1-(2t+3)S
n-2=3t(n=3,4,)两式相减,得:3ta
n-(2t+3)a
n-1=0,由此能够证明数列{a
n}为等比数列.
(Ⅱ)由
f(t)==+,得
bn=f()=+bn-1,所以
bn=,由此能求出(b
1-b
3)b
2+(b
3-b
5)b
4+…+(b
2n-1-b
2n+1)b
2n之和.
解答:解:(Ⅰ)由S
1=a
1=1,S
2=1+a
2,得3t(1+a
2)-(2t+3)=3t,∴
a2==又3tS
n-(2t+3)S
n-1=3t,3tS
n-1-(2t+3)S
n-2=3t(n=3,4,)两式相减,
得:3ta
n-(2t+3)a
n-1=0,
∴
=(n=3,4,)
综上,数列{a
n}为首项为1,公比为
的等比数列
(Ⅱ)由
f(t)==+,得
bn=f()=+bn-1,
所以{b
n}是首项为1,,公差为
的等差数列,
bn=b
1b
2-b
2b
3+b
3b
4-b
4b
5+…+b
2n-1b
2n-b
2nb
2n+1=(b
1-b
3)b
2+(b
3-b
5)b
4+…+(b
2n-1-b
2n+1)b
2n=
-(b2+b4+…+b2n)=
-•(+)=-(2n2+3n) 点评:第(Ⅰ)题考查等比数列的证明方法,证明过程中要注意迭代法的合理运用;第(Ⅱ)题考查数列前n项和的计算,解题时要注意合理地进行等价转化.