精英家教网 > 高中数学 > 题目详情
设数列{an}的首项a1=1,其前n项和Sn满足:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,…).
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)记{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
) (n=2,3,…)
,求和:b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
分析:(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,a2=
2t+3
3t
=
a2
a1
,又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减,得:3tan-(2t+3)an-1=0,由此能够证明数列{an}为等比数列.
(Ⅱ)由f(t)=
2t+3
3t
=
2
3
+
1
t
,得bn=f(
1
bn-1
)=
2
3
+bn-1
,所以bn=
2n+1
3
,由此能求出(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n之和.
解答:解:(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,∴a2=
2t+3
3t
=
a2
a1

又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)两式相减,
得:3tan-(2t+3)an-1=0,
an
an-1
=
2t+3
3t
(n=3,4,)
综上,数列{an}为首项为1,公比为
2t+3
3t
的等比数列
(Ⅱ)由f(t)=
2t+3
3t
=
2
3
+
1
t
,得bn=f(
1
bn-1
)=
2
3
+bn-1

所以{bn}是首项为1,,公差为
2
3
的等差数列,bn=
2n+1
3
b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1=(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n=-
4
3
(b2+b4+…+b2n)
=-
4
3
n
2
(
5
3
+
4n+1
3
)=-
4
9
(2n2+3n)
点评:第(Ⅰ)题考查等比数列的证明方法,证明过程中要注意迭代法的合理运用;第(Ⅱ)题考查数列前n项和的计算,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4
(2)根据上述结果猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)设数列{an}的首项a1=-
1
2
,前n项和为Sn,且对任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,数列{an}中的部分项{abk}(k∈N*)成等比数列,且b1=2,b2=4.
(Ⅰ)求数列{an}与{bn}与的通项公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函数f(x),设f(x)的定义域为R,记cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
5
4
,且an+1=
1
2
a
n
,n为偶数
an+
1
4
,n为奇数
,记bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若设数列{cn}的前n项和为Sn,cn=nbn,求Sn

查看答案和解析>>

同步练习册答案