精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当求函数处的切线方程

(2)当求函数的单调区间

(3)在(1)的条件下,证明:(其中为自然对数的底数

【答案】(1);(2)见解析;(3)见解析

【解析】试题分析:(1)对函数求导根据,即可求出,从而可求出函数处的切线方程;(2)当根据函数的导数,再通过讨论的范围求出函数的单调区间即可;(3)在(1)的条件下,问题可转化为证明,设问题可转化为恒成立根据函数的单调性证明即可.

试题解析:(1)

,令

单调增区间为单调减区间为

同理时,单调增区间为无减区间, 单调增区间为,单调减区间为.

⑶当时,要证,只需证.

,则

上单调递增

存在唯一当实数使得

不等式得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体,底面是菱形, 平面 .

(1)求证:

(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,已知直线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的极坐标为,直线与曲线的交点为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.

(1)求曲线 的直角坐标方程;

(2)设为曲线上的点, 为曲线上的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为菱形,上的点,过的平面分别交于点,且平面.

(1)证明:

(2)当的中点,与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,已知点为曲线上的动点,点在线段上,且满足,动点的轨迹为.

(1)求的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为

A. 11π B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

参考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点,上一点,于点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案