【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣4ρsinθ+2=0.
(Ⅰ)把圆C的极坐标方程化为直角坐标方程;
(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.
科目:高中数学 来源: 题型:
【题目】已知D,E是△ABC边BC的三等分点,点P在线段DE上,若 =x +y ,则xy的取值范围是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线 (t为参数)恒过椭圆 (φ为参数)在右焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A,B两点,求|FA||FB|的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}是公差大于0的等差数列,Sn为数列{an}的前n项和,已知S3=9,且2a1 , a3﹣1,a4+1构成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 =2n﹣1(n∈N*),设Tn是数列{bn}的前n项和,证明:Tn<6.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 ,记Ik=|fk(a2)﹣fk(a1)|+|fk(a3)﹣fk(a2)|++|fk(a2016)﹣fk(a2015)|,k=1,2,则( )
A.I1<I2
B.I1>I2
C.I1=I2
D.I1 , I2大小关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx+x2+(a﹣1)x﹣a,(a∈R),当x≥1时,f(x)≥0恒成立.
(1)求实数a的取值范围;
(2)若正实数x1、x2(x1≠x2)满足f(x1)+f(x2)=0,证明:x1+x2>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 (t为参数),以原点为极点,以x正半轴为极轴,建立极坐标系,曲线 .
(Ⅰ)写出曲线C1的普通方程,曲线C2的直角坐标方程;
(Ⅱ)若M(1,0),且曲线C1与曲线C2交于两个不同的点A,B,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为菱形,E为AC与BD的交点,PA⊥平面ABCD,M为PA中点,N为BC中点.
(1)证明:直线MN∥平面PCD;
(2)若点Q为PC中点,∠BAD=120°,PA= ,AB=1,求三棱锥A﹣QCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com