【题目】设函数.
(I)若,求函数的单调区间.
(II)若函数在区间上是减函数,求实数的取值范围.
(III)过坐标原点作曲线的切线,求切线的横坐标.
【答案】(1)减区间为,增区间为.(2)(3)1
【解析】试题分析:(1)求出,由可得函数的减区间,由可得函数的增区间;(2)转化成对任意恒成立求解,即对任意恒成立,求出的最小值即可;(3)设出切点,结合导数的几何意义求出过切点的切线方程,利用切线过原点可求得切点坐标。
试题解析:(I)时, ,
∴.
∵当, , 为单调减函数.
当, , 为单调增函数.
∴的单调减区间为,单调增区间为.
(II)∵, 在区间上是减函数,
∴对任意恒成立.
即对任意恒成立.
令, .
易知在上单调递减,∴.
∴.
(III)设切点为,
由题意得,
∴,
∴曲线在点切线方程为,
即.
又切线过原点,
∴,
整理得,
设,
则恒成立, 在上单调递增,
又,
∴在上只有一个零点,即,
∴切点的横坐标为.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2,AD= ,∠DAB= ,PD⊥AD,PD⊥DC.
(Ⅰ)证明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D为 ,求AP与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在棱长均为2的正四棱锥P﹣ABCD中,点E为PC中点,则下列命题正确的是( )
A.BE平行面PAD,且直线BE到面PAD距离为
B.BE平行面PAD,且直线BE到面PAD距离为
C.BE不平行面PAD,且BE与平面PAD所成角大于
D.BE不平行面PAD,且BE与面PAD所成角小于
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位有车牌尾号为的汽车和尾号为的汽车,两车分属于两个独立业务部分.对一段时间内两辆汽车的用车记录进行统计,在非限行日, 车日出车频率, 车日出车频率.该地区汽车限行规定如下:
车尾号 | 和 | 和 | 和 | 和 | 和 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且, 两车出车相互独立.
(I)求该单位在星期一恰好出车一台的概率.
(II)设表示该单位在星期一与星期二两天的出车台数之和,求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.
(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1 , S3 , 3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an , cn= ,记数列{cn}的前n项和为Tn . 若对于任意的n∈N* , Tn≤λ(n+4)恒成立,求实数λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com