精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=sin(\frac{1}{4}x+\frac{π}{6})\;(x∈R)$,把函数f(x)的图象向右平移$\frac{8π}{3}$个单位得函数g(x)的图象,则下面结论正确的是(  )
A.函数g(x)是奇函数B.函数g(x)在区间[π,2π]上是增函数
C.函数g(x)的最小正周期是4πD.函数g(x)的图象关于直线x=π对称

分析 求出平移变换后的函数的解析式,然后根据函数图象的性质进行解答.

解答 解:把函数$f(x)=sin(\frac{1}{4}x+\frac{π}{6})\;(x∈R)$的图象向右平移$\frac{8π}{3}$个单位长度,
得函数g(x)=sin[$\frac{1}{4}$(x-$\frac{8π}{3}$)+$\frac{π}{6}$]=-cos$\frac{x}{4}$.
A、数g(x)是偶函数,故本选项错误;
B、当x∈[π,2π]时,$\frac{x}{4}$∈[$\frac{π}{4}$,$\frac{π}{2}$],则函数g(x)=-cos$\frac{x}{4}$单调递增,即函数g(x)在区间[π,2π]上增函数,故本选项正确;
C、函数g(x)的最小正周期为=$\frac{2π}{\frac{1}{4}}$=8π,故本选项错误;
D、函数g(x)的图象关于直线x=4kπ(k∈Z)对称,故本选项错误;
故选:B.

点评 本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某同学收集了班里9名男生50m跑的测试成绩(单位:s):
6,4、7.5、8.0、6.8、9.1、8.3、6.9、8.4、9.5,并设计了一个算法可以从这些数据中搜索出小于8,0的数据,算法步骤如下:
第一步:i=1
第二步:输入一个数据a
第三步:如果a<8.0,则输出a,否则执行第四步
第四步:i=i+1
第五步:如果i>9,则结束算法,否则执行第二步
请你根据上述算法将下列程序框图补充完整.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|x-a|+|x-5|,x∈R.
(1)当a=2时,求不等式f(x)≥5的解集;
(2)已知a<5,若关于x的方程f(x)=ax有且只有两个实数解,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=3x-$\frac{4}{x}$-a的一个零点在区间(1,2)内,则实数a的取值范围(  )
A.(-2,7)B.(-1,6)C.(-1,7)D.(-2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用符号?x>表示.对于实数a,无穷数列{an}满足如下条件:
①a1=?a>; ②an+1=$\left\{\begin{array}{l}{<\frac{1}{{a}_{n}}>({a}_{n}≠0)}\\{0({a}_{n}=0)}\end{array}\right.$.
(Ⅰ)若a=$\sqrt{2}$时,数列{an}通项公式为an=$\sqrt{2}$-1;
(Ⅱ)当a>$\frac{1}{2}$时,对任意n∈N*都有an=a,则a的值为$\frac{\sqrt{5}-1}{2}$ 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=x-$\frac{4}{x}$的零点个数是(  )
A.0B.1C.2D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx的图象在点(1,0)处的切线方程是x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),圆F:(x-c)2+y2=c2,直线l与双曲线C的一条渐近线垂直且在x轴上的截距为$\frac{2}{3}$a,若圆F被直线l所截得的弦长为$\frac{4\sqrt{2}}{3}$c,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一张画有直角坐标系的图纸折叠一次,使得点A(0,2)与点B(4,0)重合,若此时点C(7,3)与点D(m,n)重合,则m+n的值为(  )
A.6B.$\frac{31}{2}$C.5D.$\frac{34}{5}$

查看答案和解析>>

同步练习册答案