·ÖÎö £¨1£©¢Ù·½·¨Ò»£ºÓÉ{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î¿ÉµÃb2014=0¡Áb2013=0£¬ÔÙÓÉb2015=b2014+3£¬b2016=b2015+3¼´¿É£»
·½·¨¶þ£º¸ù¾Ý{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î£¬⇒b1=1£¬b2=4£¬b3=7£¬b4=0¡Áb3=0£¬b5=b4+3=3£¬b6=b5+3=6£¬b7=0¡Áb6=0£¬¡⇒bn}ÊÇÖÜÆÚΪ3µÄÖÜÆÚÊýÁм´¿É£»
¢Ú·½·¨Ò»£ºÓÉ{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î£¬⇒b3n+2-b3n-1=£¨b3n+1+d£©-b3n-1=£¨qb3n+d£©-b3n-1=[q£¨b3n-1+d£©+d]-b3n-1=2d=6£¬⇒{b3n-1}ÊǵȲîÊýÁУ¬ÓÖ¡ßb3n-2+b3n-1+b3n=£¨b3n-1-d£©+b3n-1+£¨b3n-1+d£©=3b3n-1£¬¼´¿ÉÇóS3n
·½·¨¶þ£ºÓÉ{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î⇒b3n+1=b3n£¬¡àb3n+3-b3n=b3n+3-b3n+1=2d=6£¬¡à{b3n}ÊÇÊ×ÏîΪb3=7¡¢¹«²îΪ6µÄµÈ²îÊýÁм´¿É£¬
£¨2£©·½·¨Ò»£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬⇒µÈ±ÈÊýÁеÄͨÏʽÓÐ${b_n}=b{q^{n-1}}$£¬
µ±m¡ÊN*ʱ£¬bkm+2-bkm+1=d£¬¼´bqkm+1-bqkm=bqkm£¨q-1£©=dºã³ÉÁ¢£¬¢ÙÈôq=1£¬Ôòd=0£¬bn=b£»
¢ÚÈôq¡Ù1£¬Ôò${q^{km}}=\frac{d}{{£¨{q-1}£©b}}$£¬ÔòqkmΪ³£Êý£¬Ôòq=-1£¬kΪżÊý£¬d=-2b£¬${b_n}={£¨{-1}£©^{n-1}}b$£»
·½·¨¶þ£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬
¢ÙÈôk=2£¬Ôòb1=b£¬b2=b+d£¬b3=£¨b+d£©q£¬b4=£¨b+d£©q+d£¬ÓÉ${b_1}{b_3}=b_2^2$£¬µÃb+d=bq£»ÓÉ${b_2}{b_4}=b_3^2$£¬µÃ£¨b+d£©q2=£¨b+d£©q+d£¬ÇóµÃµÃd ¼´¿É
¢ÚÈôk¡Ý3£¬Ôòb1=b£¬b2=b+d£¬b3=b+2d£¬ÓÉ${b_1}{b_3}=b_2^2$£¬ÇóµÃµÃd ¼´¿É£®
½â´ð £¨1£©¢Ù·½·¨Ò»£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢0¡¢3£¬¡àb2014=0¡Áb2013=0£¬¡àb2015=b2014+3=3£¬¡àb2016=b2015+3=6£®¡£¨3·Ö£©
·½·¨¶þ£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢0¡¢3£¬
¡àb1=1£¬b2=4£¬b3=7£¬b4=0¡Áb3=0£¬b5=b4+3=3£¬b6=b5+3=6£¬b7=0¡Áb6=0£¬¡
¡àµ±n¡Ý4ʱ£¬{bn}ÊÇÖÜÆÚΪ3µÄÖÜÆÚÊýÁУ®
¡àb2016=b6=6£®¡£¨3·Ö£©
¢Ú·½·¨Ò»£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢1¡¢3£¬
¡àb3n+2-b3n-1=£¨b3n+1+d£©-b3n-1=£¨qb3n+d£©-b3n-1=[q£¨b3n-1+d£©+d]-b3n-1=2d=6£¬
¡à{b3n-1}ÊÇÒÔb2=4ΪÊ×Ïî¡¢6Ϊ¹«²îµÄµÈ²îÊýÁУ¬
ÓÖ¡ßb3n-2+b3n-1+b3n=£¨b3n-1-d£©+b3n-1+£¨b3n-1+d£©=3b3n-1£¬¡àS3n=£¨b1+b2+b3£©+£¨b4+b5+b6£©+¡+£¨b3n-2+b3n-1+b3n£©=$3£¨{{b_2}+{b_5}¡+{b_{3n-1}}}£©=3[{4n+\frac{{n£¨{n-1}£©}}{2}¡Á6}]=9{n^2}+3n$£¬¡£¨6·Ö£©¡ß${S_{3n}}¡Ü¦Ë•{3^{n-1}}$£¬¡à$\frac{{{S_{3n}}}}{{{3^{n-1}}}}¡Ü¦Ë$£¬Éè$¡ÏADB=\frac{¦Ð}{2}$£¬Ôò¦Ë¡Ý£¨cn£©max£¬
ÓÖ${c_{n+1}}-{c_n}=\frac{{9{{£¨{n+1}£©}^2}+3£¨{n+1}£©}}{3^n}-\frac{{9{n^2}+3n}}{{{3^{n-1}}}}=\frac{{-2£¨{3{n^2}-2n-2}£©}}{{{3^{n-1}}}}$£¬
µ±n=1ʱ£¬3n2-2n-2£¼0£¬c1£¼c2£»µ±n¡Ý2ʱ£¬3n2-2n-2£¾0£¬cn+1£¼cn£¬
¡àc1£¼c2£¾c3£¾¡£¬¡à£¨cn£©max=c2=14£¬¡£¨9·Ö£©
¡à¦Ë¡Ý14£¬µÃ¦Ë¡Ê[14£¬+¡Þ£©£®¡£¨10·Ö£©
·½·¨¶þ£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢1¡¢3£¬
¡àb3n+1=b3n£¬¡àb3n+3-b3n=b3n+3-b3n+1=2d=6£¬¡à{b3n}ÊÇÊ×ÏîΪb3=7¡¢¹«²îΪ6µÄµÈ²îÊýÁУ¬
¡à${b_3}+{b_6}+¡+{b_{3n}}=7n+\frac{{n£¨{n-1}£©}}{2}¡Á6=3{n^2}+4n$£¬
Ò×Öª{bn}ÖÐɾµô{b3n}µÄÏîºó°´ÔÀ´µÄ˳Ðò¹¹³ÉÒ»¸öÊ×ÏîΪ1¹«²îΪ3µÄµÈ²îÊýÁУ¬¡à${b_1}+{b_2}+{b_4}+{b_5}+¡+{b_{3n-2}}+{b_{3n-1}}=2n¡Á1+\frac{{2n£¨{2n-1}£©}}{2}¡Á3=6{n^2}-n$£¬¡à${S_{3n}}=£¨{3{n^2}+4n}£©+£¨{6{n^2}-n}£©=9{n^2}+3n$£¬¡£¨6·Ö£©
ÒÔÏÂͬ·½·¨Ò»£®
£¨2£©·½·¨Ò»£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬
ÔòµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪ$\frac{{{b_{k+1}}}}{b_k}=q$£¬ÓɵȱÈÊýÁеÄͨÏʽÓÐ${b_n}=b{q^{n-1}}$£¬
µ±m¡ÊN*ʱ£¬bkm+2-bkm+1=d£¬¼´bqkm+1-bqkm=bqkm£¨q-1£©=dºã³ÉÁ¢£¬¡£¨12·Ö£©
¢ÙÈôq=1£¬Ôòd=0£¬bn=b£»
¢ÚÈôq¡Ù1£¬Ôò${q^{km}}=\frac{d}{{£¨{q-1}£©b}}$£¬ÔòqkmΪ³£Êý£¬Ôòq=-1£¬kΪżÊý£¬d=-2b£¬${b_n}={£¨{-1}£©^{n-1}}b$£»
¾¼ìÑ飬Âú×ãÌõ¼þµÄ{bn}µÄͨÏʽΪbn=b»ò${b_n}={£¨{-1}£©^{n-1}}b$£®¡£¨16·Ö£©
·½·¨¶þ£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬
¢ÙÈôk=2£¬Ôòb1=b£¬b2=b+d£¬b3=£¨b+d£©q£¬b4=£¨b+d£©q+d£¬
ÓÉ${b_1}{b_3}=b_2^2$£¬µÃb+d=bq£»ÓÉ${b_2}{b_4}=b_3^2$£¬µÃ£¨b+d£©q2=£¨b+d£©q+d£¬
ÁªÁ¢Á½Ê½£¬µÃ$\left\{\begin{array}{l}d=0\\ q=1\end{array}\right.$»ò$\left\{\begin{array}{l}d=-2b\\ q=-1\end{array}\right.$£¬Ôòbn=b»ò${b_n}={£¨{-1}£©^{n-1}}b$£¬¾¼ìÑé¾ùºÏÌâÒ⣮¡£¨13·Ö£©
¢ÚÈôk¡Ý3£¬Ôòb1=b£¬b2=b+d£¬b3=b+2d£¬
ÓÉ${b_1}{b_3}=b_2^2$£¬µÃ£¨b+d£©2=b£¨b+2d£©£¬µÃd=0£¬Ôòbn=b£¬¾¼ìÑéÊʺÏÌâÒ⣮
×ÛÉÏ¢Ù¢Ú£¬Âú×ãÌõ¼þµÄ{bn}µÄͨÏʽΪbn=b»ò${b_n}={£¨{-1}£©^{n-1}}b$£®¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˵ȲîµÈ±ÈÊýÁеÄÔËËã¼°ÐÔÖÊ£¬¿¼²éÁËѧÉúµÄÍÆÀíºÍ·ÖÎöÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨2£¬0£© | B£® | £¨2£¬1£© | C£® | £¨0£¬2£© | D£® | £¨1£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com