3£®Èô´æÔÚ³£Êýk£¨k¡ÊN*£¬k¡Ý2£©¡¢q¡¢d£¬Ê¹µÃÎÞÇîÊýÁÐ{an}Âú×ã${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d£¬\frac{n}{k}∉{N^*}\\ q{a_n}£¬\frac{n}{k}¡Ê{N^*}\end{array}\right.$Ôò³ÆÊýÁÐ{an}Ϊ¡°¶Î±È²îÊýÁС±£¬ÆäÖг£Êýk¡¢q¡¢d·Ö±ð½Ð×ö¶Î³¤¡¢¶Î±È¡¢¶Î²î£®ÉèÊýÁÐ{bn}Ϊ¡°¶Î±È²îÊýÁС±£®
£¨1£©Èô{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢q¡¢3£®
¢Ùµ±q=0ʱ£¬Çób2016£»
¢Úµ±q=1ʱ£¬Éè{bn}µÄÇ°3nÏîºÍΪS3n£¬Èô²»µÈʽ${S_{3n}}¡Ü¦Ë•{3^{n-1}}$¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£»
£¨2£©Éè{bn}ΪµÈ±ÈÊýÁУ¬ÇÒÊ×ÏîΪb£¬ÊÔд³öËùÓÐÂú×ãÌõ¼þµÄ{bn}£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¢Ù·½·¨Ò»£ºÓÉ{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î¿ÉµÃb2014=0¡Áb2013=0£¬ÔÙÓÉb2015=b2014+3£¬b2016=b2015+3¼´¿É£»
·½·¨¶þ£º¸ù¾Ý{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î£¬⇒b1=1£¬b2=4£¬b3=7£¬b4=0¡Áb3=0£¬b5=b4+3=3£¬b6=b5+3=6£¬b7=0¡Áb6=0£¬¡­⇒bn}ÊÇÖÜÆÚΪ3µÄÖÜÆÚÊýÁм´¿É£»
 ¢Ú·½·¨Ò»£ºÓÉ{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î£¬⇒b3n+2-b3n-1=£¨b3n+1+d£©-b3n-1=£¨qb3n+d£©-b3n-1=[q£¨b3n-1+d£©+d]-b3n-1=2d=6£¬⇒{b3n-1}ÊǵȲîÊýÁУ¬ÓÖ¡ßb3n-2+b3n-1+b3n=£¨b3n-1-d£©+b3n-1+£¨b3n-1+d£©=3b3n-1£¬¼´¿ÉÇóS3n
·½·¨¶þ£ºÓÉ{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î⇒b3n+1=b3n£¬¡àb3n+3-b3n=b3n+3-b3n+1=2d=6£¬¡à{b3n}ÊÇÊ×ÏîΪb3=7¡¢¹«²îΪ6µÄµÈ²îÊýÁм´¿É£¬
£¨2£©·½·¨Ò»£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬⇒µÈ±ÈÊýÁеÄͨÏʽÓÐ${b_n}=b{q^{n-1}}$£¬
µ±m¡ÊN*ʱ£¬bkm+2-bkm+1=d£¬¼´bqkm+1-bqkm=bqkm£¨q-1£©=dºã³ÉÁ¢£¬¢ÙÈôq=1£¬Ôòd=0£¬bn=b£»
¢ÚÈôq¡Ù1£¬Ôò${q^{km}}=\frac{d}{{£¨{q-1}£©b}}$£¬ÔòqkmΪ³£Êý£¬Ôòq=-1£¬kΪżÊý£¬d=-2b£¬${b_n}={£¨{-1}£©^{n-1}}b$£»
·½·¨¶þ£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬
¢ÙÈôk=2£¬Ôòb1=b£¬b2=b+d£¬b3=£¨b+d£©q£¬b4=£¨b+d£©q+d£¬ÓÉ${b_1}{b_3}=b_2^2$£¬µÃb+d=bq£»ÓÉ${b_2}{b_4}=b_3^2$£¬µÃ£¨b+d£©q2=£¨b+d£©q+d£¬ÇóµÃµÃd ¼´¿É
 ¢ÚÈôk¡Ý3£¬Ôòb1=b£¬b2=b+d£¬b3=b+2d£¬ÓÉ${b_1}{b_3}=b_2^2$£¬ÇóµÃµÃd ¼´¿É£®

½â´ð £¨1£©¢Ù·½·¨Ò»£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢0¡¢3£¬¡àb2014=0¡Áb2013=0£¬¡àb2015=b2014+3=3£¬¡àb2016=b2015+3=6£®¡­£¨3·Ö£©
·½·¨¶þ£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢0¡¢3£¬
¡àb1=1£¬b2=4£¬b3=7£¬b4=0¡Áb3=0£¬b5=b4+3=3£¬b6=b5+3=6£¬b7=0¡Áb6=0£¬¡­
¡àµ±n¡Ý4ʱ£¬{bn}ÊÇÖÜÆÚΪ3µÄÖÜÆÚÊýÁУ®
¡àb2016=b6=6£®¡­£¨3·Ö£©
¢Ú·½·¨Ò»£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢1¡¢3£¬
¡àb3n+2-b3n-1=£¨b3n+1+d£©-b3n-1=£¨qb3n+d£©-b3n-1=[q£¨b3n-1+d£©+d]-b3n-1=2d=6£¬
¡à{b3n-1}ÊÇÒÔb2=4ΪÊ×Ïî¡¢6Ϊ¹«²îµÄµÈ²îÊýÁУ¬
ÓÖ¡ßb3n-2+b3n-1+b3n=£¨b3n-1-d£©+b3n-1+£¨b3n-1+d£©=3b3n-1£¬¡àS3n=£¨b1+b2+b3£©+£¨b4+b5+b6£©+¡­+£¨b3n-2+b3n-1+b3n£©=$3£¨{{b_2}+{b_5}¡­+{b_{3n-1}}}£©=3[{4n+\frac{{n£¨{n-1}£©}}{2}¡Á6}]=9{n^2}+3n$£¬¡­£¨6·Ö£©¡ß${S_{3n}}¡Ü¦Ë•{3^{n-1}}$£¬¡à$\frac{{{S_{3n}}}}{{{3^{n-1}}}}¡Ü¦Ë$£¬Éè$¡ÏADB=\frac{¦Ð}{2}$£¬Ôò¦Ë¡Ý£¨cn£©max£¬
ÓÖ${c_{n+1}}-{c_n}=\frac{{9{{£¨{n+1}£©}^2}+3£¨{n+1}£©}}{3^n}-\frac{{9{n^2}+3n}}{{{3^{n-1}}}}=\frac{{-2£¨{3{n^2}-2n-2}£©}}{{{3^{n-1}}}}$£¬
µ±n=1ʱ£¬3n2-2n-2£¼0£¬c1£¼c2£»µ±n¡Ý2ʱ£¬3n2-2n-2£¾0£¬cn+1£¼cn£¬
¡àc1£¼c2£¾c3£¾¡­£¬¡à£¨cn£©max=c2=14£¬¡­£¨9·Ö£©
¡à¦Ë¡Ý14£¬µÃ¦Ë¡Ê[14£¬+¡Þ£©£®¡­£¨10·Ö£©
·½·¨¶þ£º¡ß{bn}µÄÊ×Ïî¡¢¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪ1¡¢3¡¢1¡¢3£¬
¡àb3n+1=b3n£¬¡àb3n+3-b3n=b3n+3-b3n+1=2d=6£¬¡à{b3n}ÊÇÊ×ÏîΪb3=7¡¢¹«²îΪ6µÄµÈ²îÊýÁУ¬
¡à${b_3}+{b_6}+¡­+{b_{3n}}=7n+\frac{{n£¨{n-1}£©}}{2}¡Á6=3{n^2}+4n$£¬
Ò×Öª{bn}ÖÐɾµô{b3n}µÄÏîºó°´Ô­À´µÄ˳Ðò¹¹³ÉÒ»¸öÊ×ÏîΪ1¹«²îΪ3µÄµÈ²îÊýÁУ¬¡à${b_1}+{b_2}+{b_4}+{b_5}+¡­+{b_{3n-2}}+{b_{3n-1}}=2n¡Á1+\frac{{2n£¨{2n-1}£©}}{2}¡Á3=6{n^2}-n$£¬¡à${S_{3n}}=£¨{3{n^2}+4n}£©+£¨{6{n^2}-n}£©=9{n^2}+3n$£¬¡­£¨6·Ö£©
ÒÔÏÂͬ·½·¨Ò»£®
£¨2£©·½·¨Ò»£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬
ÔòµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪ$\frac{{{b_{k+1}}}}{b_k}=q$£¬ÓɵȱÈÊýÁеÄͨÏʽÓÐ${b_n}=b{q^{n-1}}$£¬
µ±m¡ÊN*ʱ£¬bkm+2-bkm+1=d£¬¼´bqkm+1-bqkm=bqkm£¨q-1£©=dºã³ÉÁ¢£¬¡­£¨12·Ö£©
¢ÙÈôq=1£¬Ôòd=0£¬bn=b£»
¢ÚÈôq¡Ù1£¬Ôò${q^{km}}=\frac{d}{{£¨{q-1}£©b}}$£¬ÔòqkmΪ³£Êý£¬Ôòq=-1£¬kΪżÊý£¬d=-2b£¬${b_n}={£¨{-1}£©^{n-1}}b$£»
¾­¼ìÑ飬Âú×ãÌõ¼þµÄ{bn}µÄͨÏʽΪbn=b»ò${b_n}={£¨{-1}£©^{n-1}}b$£®¡­£¨16·Ö£©
·½·¨¶þ£ºÉè{bn}µÄ¶Î³¤¡¢¶Î±È¡¢¶Î²î·Ö±ðΪk¡¢q¡¢d£¬
¢ÙÈôk=2£¬Ôòb1=b£¬b2=b+d£¬b3=£¨b+d£©q£¬b4=£¨b+d£©q+d£¬
ÓÉ${b_1}{b_3}=b_2^2$£¬µÃb+d=bq£»ÓÉ${b_2}{b_4}=b_3^2$£¬µÃ£¨b+d£©q2=£¨b+d£©q+d£¬
ÁªÁ¢Á½Ê½£¬µÃ$\left\{\begin{array}{l}d=0\\ q=1\end{array}\right.$»ò$\left\{\begin{array}{l}d=-2b\\ q=-1\end{array}\right.$£¬Ôòbn=b»ò${b_n}={£¨{-1}£©^{n-1}}b$£¬¾­¼ìÑé¾ùºÏÌâÒ⣮¡­£¨13·Ö£©
¢ÚÈôk¡Ý3£¬Ôòb1=b£¬b2=b+d£¬b3=b+2d£¬
ÓÉ${b_1}{b_3}=b_2^2$£¬µÃ£¨b+d£©2=b£¨b+2d£©£¬µÃd=0£¬Ôòbn=b£¬¾­¼ìÑéÊʺÏÌâÒ⣮
×ÛÉÏ¢Ù¢Ú£¬Âú×ãÌõ¼þµÄ{bn}µÄͨÏʽΪbn=b»ò${b_n}={£¨{-1}£©^{n-1}}b$£®¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˵ȲîµÈ±ÈÊýÁеÄÔËËã¼°ÐÔÖÊ£¬¿¼²éÁËѧÉúµÄÍÆÀíºÍ·ÖÎöÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÒ»¸öÉÈÐεÄÖܳ¤Îª¶¨Öµa£¬ÇóÆäÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱԲÐĽǦÁµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª0£¼x£¼$\frac{¦Ð}{2}$£¬ÇÒtan£¨x-$\frac{¦Ð}{4}$£©=-$\frac{1}{7}$£¬Ôòsinx+cosx=$\frac{7}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÑù±¾Êý¾Ýx1£¬x2£¬x3£¬x4£¬x5µÄ·½²îs2=3£¬ÔòÑù±¾Êý¾Ý2x1£¬2x2£¬2x3£¬2x4£¬2x5µÄ·½²îΪ12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬·Ö±ðÔÚxÖáÓëÖ±Ïß$y=\frac{{\sqrt{3}}}{3}£¨{x+1}£©$ÉÏ´Ó×óÏòÓÒÒÀ´ÎÈ¡µãAk¡¢Bk£¬k=1£¬2£¬¡­£¬ÆäÖÐA1ÊÇ×ø±êÔ­µã£¬Ê¹¡÷AkBkAk+1¶¼ÊǵȱßÈý½ÇÐΣ¬Ôò¡÷A10B10A11µÄ±ß³¤ÊÇ512£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Éèn¡ÊN*£¬n¡Ý3£¬k¡ÊN*£®
£¨1£©ÇóÖµ£º
¢ÙkCnk-nCn-1k-1£»
¢Úk2Cnk-n£¨n-1£©Cn-2k-2-nCn-1k-1£¨k¡Ý2£©£»
£¨2£©»¯¼ò£º12Cn0+22Cn1+32Cn2+¡­+£¨k+1£©2Cnk+¡­+£¨n+1£©2Cnn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÖ±Ïßx-2y+2=0ÓëÔ²CÏàÇУ¬Ô²CÓëxÖá½»ÓÚÁ½µãA £¨-1£¬0£©¡¢B £¨3£¬0£©£¬ÔòÔ²CµÄ·½³ÌΪ£¨x-1£©2+£¨y+1£©2=5»ò£¨x-1£©2+£¨y+11£©2=125£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ö±Ïßx+2y-4=0ÓëÖ±Ïß2x-y+2=0µÄ½»µã×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨2£¬0£©B£®£¨2£¬1£©C£®£¨0£¬2£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑ֪ȫ¼¯U={1£¬2£¬3£¬4£¬5£¬6£¬7}£¬¼¯ºÏA={1£¬2£¬3}£¬B={2£¬3£¬4}£¬ÔòA¡ÉB={2£¬3}£¬∁UA={4£¬5£¬6£¬7}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸