精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式f(x)+2>0的解集是


  1. A.
    (-2,2)
  2. B.
    (-∞,-2)∪(2,+∞)
  3. C.
    (-1,1)
  4. D.
    (-∞,-1)∪(1,+∞)
A
分析:已知分段函数f(x)求不等式f(x)+2>0的解集,要分类讨论:①当x≥0时;②当x<0时,分别代入不等式f(x)+2>0,从而求出其解集.
解答:①当x≥0时;f(x)=-x2+x,
∵-x2+x+2>0,
x2-x-2<0,
解得,-1<x<2,
∴0≤x<2;
②当x<0时;f(x)=-x2-x,
∴-x2-x+2>0,
解得,-2<x<1,
∴-2<x<0,
综上①②知不等式f(x)+2>0的解集是:(-2,2),
故选A.
点评:此题主要考查一元二次不等式的解法,在解答的过程中运用的分类讨论的思想,是一道比较基础的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使得f[f(x0)]>x0
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有
(1)(2)(4)
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定义域为[0,1].
(1)求g(x)的解析式;
(2)求g(x)的单调区间,确定其单调性并用定义证明;
(3)求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y∈R总有f(x)+f(y)=f(x+y)且当x>0时,f(x)<0,f(1)=-
23

(1)求证:f(x)+f(-x)=0
(2)求证:函数f(x)是R上的减函数;
(3)求f(X)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案